This talk will provide an overview on the whitepaper 'Ultra-High-Energy Cosmic Rays: The Intersection of the Cosmic and Energy Frontiers' [arXiv:2205.05845] that has been prepared for the Snowmass survey in the USA. The paper discusses recent progress and open questions regarding the particle physics and astrophysics related to ulra-high-energy cosmic rays. The upgraded Pierre Auger...
The growing number of multi-messenger observations provides an unprecedented view on powerful cosmic fireworks. Recent developments on the modeling of the sources and the related multi-messenger signals will be reviewed together with the most exciting detection prospects.
The Universe is capable of accelerating cosmic rays to energies beyond 10^20 eV. Due to deflection in magnetic fields during their propagation, it is difficult to trace them back to their origin. However, cosmic rays produce gamma-ray photons and neutrinos in interactions with matter and photon fields in or close to the source. Being neutral those secondary particles can travel undeflected and...
In this talk I will review the recent results from high energy cosmic ray measurements, in the 'above TeV' energy region. I will also describe the future experiments that will be realised to significantly improve the current measurements, aiming to explore the PeV region with direct measurements.
LHAASO as a complex of detector arrays has been built and operated for cosmic ray (CR) measurements in the energy range from 100 TeV to 100 PeV. The goals are measuring knees of individual species such as protons, helium and iron nuclei. Two key issues are the energy scale determination and separation of specific species from others in the air shower detection. Using the moon shadow in...
The IceCube Neutrino Observatory is a multi-component detector at the South Pole capable of measuring high-energy cosmic rays from PeV to EeV. This energy region is typically thought to cover the transition from galactic to extragalactic sources of cosmic rays. The observatory consists of the IceTop surface array, which is sensitive to the electromagnetic and low-energy muonic part of an air...
In the study of cosmic rays, the measurement of the energy spectrum of the primaries is one of the main issues and provides fundamental information on the most energetic phenomena in the Universe. At ultra-high energies, beyond 10^18 eV, the cosmic rays are studied by the two largest observatories built so far, the Pierre Auger Observatory and the Telescope Array. Both observatories are based...
Located in the west desert of Utah, USA, the Telescope Array experiment is the largest ultra-high energy cosmic ray observatory in the northern hemisphere. It consists of two types of detectors: scintillator surface detectors (SDs) and air fluorescence detectors (FDs). A total of 507 SDs consisting of two-layer plastic scintillation counters is deployed with 1.2 km spacing, making measurements...
The TA Low-energy Extension (TALE) experiment extends the TA experiment on the low-energy side to below $10^{16}\,$eV. We aim to study the transition from galactic to extragalactic cosmic rays. The TALE detector is a hybrid apparatus composed of fluorescence telescopes and surface detectors, and the surface detectors are arranged to be suitable for hybrid energy spectrum measurements in the...
The Telescope Array and the Pierre Auger Observatory estimate the composition of ultra-high-energy cosmic rays by observing the distribution of depths of air shower maximum, $X_\mathrm{max}$. Both experiments directly observe the longitudinal development of air showers using fluorescence telescopes with surface particle detectors used in conjunction to provide precision in determining air...
During UHECR2018, it was pointed out that data from Fly’s Eye, HiRes and the Telescope Array were suggestive of a break in the Elongation Rate above ~3EeV. Sokolsky and D’Avignon (2021) have recently rediscovered this observation. Additionally, they assert that cosmic rays arriving from the Northern Hemisphere have a different mass composition from those arriving from the Southern...
The TALE experiment is a TA low-energy extension to observe cosmic rays with energies down to 1016.5 to clarify the origin of the second knee and the energy of a galatic-to-extragalactic transition. TALE consists of 10 high-elevation fluorescence detectors and 80 scintillation counters in an area of 21km . The key of data interpretation is the mass composition of cosmic rays, and we will...
The Telescope Array (TA) located in the State of Utah in the US is the largest ultra-high energy cosmic rays observatory in the northern hemisphere. The Telescope Array Low-energy Extension (TALE) detector was constructed to study the transition of cosmic rays from Galactic to extra-galactic origin. The TALE detector consists of a Fluorescence Detector (FD) station with 10 high elevation...
The Auger Engineering Radio Array (AERA), as part of the Pierre Auger Observatory, is an array of radio antennas probing the nature of ultra-high energy cosmic rays at energies around the transition from Galactic to extra-galactic origin. It measures the MHz radio emission of extensive air showers produced by cosmic rays hitting our atmosphere. The elemental composition of cosmic rays is a...
A catalog that contains details of the highest-energy cosmic rays, recorded by the Pierre Auger Collaboration between 1 January 2004 and 31 December 2020, is presented. Data from 100 air showers, generated by particles having energies in the range 78 EeV to 166 EeV, are described, together with nine other very energetic events used in the energy calibration. The catalog has been created to...
This is an invited review talk.
Abstract text to be added.
In this talk, I will review the observational properties of magnetic fields in our Galaxy -- in particular in the Galactic halo -- and in the intergalactic medium.
I will lay the emphasis on the properties that are relevant to the propagation of UHECRs, namely, the strength and the overall topology of the magnetic field.
I will discuss how these properties fit in with the basic predictions of...
The origin of ultra-high-energy cosmic rays (UHECRs) remains a mystery. The interactions of UHECRs with background photons restricts their propagation length to at most a few hundred megaparsecs. Because the distribution of extra-Galactic matter at such distances is anisotropic, we expect the angular distribution of UHECR arrival directions to bear information about this anisotropy. However,...
The Telescope Array (TA) experiment, the largest observatory studying ultra-high energy cosmic rays in the northern hemisphere, has reported evidence for two medium-scale anisotropies. The first, known as the TA hotspot, is an excess in the arrival direction distribution for events with energies greater than 5.7$\times10^{19}$ eV. More recently, an additional excess of events with energies...
The Pierre Auger Observatory, in continuous operation since 2004, provides the largest statistics in the world on ultra-high-energy cosmic rays (UHECRs). The Observatory employs a hybrid technique: a surface detector (SD) consisting of 1660 water-Cherenkov detectors and covering an area of 3000 km² and 27 fluorescence telescopes. The distribution of UHECR arrival directions is expected to...
We study the energy-dependent distribution of ultra-high energy cosmic ray arrival directions with respect to luminous matter in the local Universe. We use a specially designed test statistic (TS) that is robust to uncertainties of the galactic magnetic field. We generate realistic mock UHECR sets assuming various injected compositions, and different strengths of the extragalactic magnetic...
We test for a large-scale anisotropy in the mass of arriving cosmic-ray primaries as a function of galactic latitude. The sensitivity to primary mass is obtained through the depth of shower maximum, $X_{\text{max}}$, extracted from hybrid events measured over a 14-year period at the Pierre Auger Observatory. The sky is split into distinct on- and off-plane regions using the galactic latitude...
Recent observations by the PAO indicate a correlation between UHECRs and the local galactic structure. We explore the possibility that this correlation is brought about by UHECRs having a single origin, and subsequently ballistically propagating in extragalactic space before reverberating off the local galactic within the Council of Giants. Focusing effects within the reverberated wave...
As is now painfully evident, finding the sources of UHECRs is very challenging due to the combination of most UHECRs having intermediate masses, the precision of charge assignments being still crude, and deflections in the Galactic magnetic generally being large. These effects not only smear the images of individual UHECR sources but also lead to a non-trivial and poorly-constrained mapping...
Galactic cosmic rays (GCRs) and (anisotropically injected) extragalactic cosmic rays (EGCRs) are both affected by the Galactic magentic field (GMF) on their voyage to Earth at energies pertaining to the transition from GCRs to EGCRs, such that their flux, composition and arrival directions are modified. GCRs increasingly leak from the Galaxy with rising energy, leading to a flux suppression....
The Pierre Auger Observatory, being the largest air-shower experiment in the world, offers an unprecedented exposure to neutral particles at the highest energies. Since the beginning of data collection more than 18 years ago, several searches for ultra-high-energy (UHE, $E > 10^{17}$ eV) photons and neutrinos have been performed. The upper limits on the diffuse flux of UHE photons and...
The combination of data from observatories measuring ultra-high energy cosmic rays, photons, neutrinos and gravitational waves has provided new insights into the most extreme phenomena in the Universe. Sharing information within a broad community is the foundation of the multi-messenger approach.
The Pierre Auger Observatory, the world's largest cosmic ray detector, provides sensitivity to...
Telescope Array (TA) is the largest ultrahigh-energy cosmic-ray (UHECR) observatory in the northern hemisphere. It explores the origin of UHECRs using a surface detector (SD) array covering approximately 700 km$^2$ and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with energies greater than 57 EeV known as a hotspot. Recently, implications of...
The TAx4 experiment aims to understand UHECR by expanding the observation area of the TA experiment by a factor of 4 and increasing the statistics of UHECR events above 10^19 eV. TAx4 consists of newly installed Surface Detectors (SD) and Fluorescence Detectors (FD), and currently operates with an area 2.5 times TA including the original TA area. The TAx4 SD array has been collecting data...
The Pierre Auger Observatory and the Telescope Array (TA) are the two largest ultra-high-energy cosmic ray observatories in the world. They operate in the Southern and Northern hemispheres, respectively, at similar latitudes, but with different surface detector (SD) designs. This difference in detector design changes their sensitivity to the various components of extensive air showers. The...
The Pierre Auger Collaboration started a few years ago the AugerPrime project to increase the Surface Detector (SD) performance of the Pierre Auger Observatory. It aims to address the still open questions on the origin and composition of the highest energy cosmic rays by allowing better identification of the nature of the primaries. The key element of this major upgrade is the capability of...
Cosmic ray physics at LNGS, starting from late 80's
LHC results/projects with relevance for (UHE)CR physics will be covered, including some comparisons with hadronic interaction model/simulation predictions and recent progress in the field.
Report from the WHISP group
We present a new method for testing the predictions of hadronic interaction models and improving their consistency with observed two-dimensional distributions of the depth of shower maximum, $X_\text{max}$, and signal at the ground level as a function of zenith angle. The method relies on the assumption that the mass composition is the same at all zenith angles, while the atmospheric shower...
We have implemented ad-hoc modifications to the CORSIKA Monte-Carlo generator which allow us to simultaneously adjust the multiplicity, elasticity and cross-section of hadronic interactions with respect to the predictions of the Sibyll 2.3d interaction model, in order to assess whether a reasonable combination of changes (that is not excluded by current experimental data) could alleviate the...
A precise understanding of hadronic interactions is essential to interpreting the mass composition of ultra-high energy cosmic rays from the results of air shower experiments. The LHC-forward (LHCf) experiment aims to measure forward neutral particles to validate hadronic interaction models adopted in air shower simulations.
We already published the energy spectrum of forward photons and...
Lorentz symmetry requires the space-time structure to be the same for all observers, but, on the other hand, various quantum gravity theories suggest that it may be violated when approaching the Planck scale. Even a small violation of Lorentz Invariance (LI) could easily affect the Ultra High Energy Cosmic Rays (UHECRs) propagation on a cosmological scale. Moreover, at the extreme energies,...
I discuss problems regarding the origin, propagation, spectral shape and chemical composition of the ultra-high energy cosmic rays above the GZK cutoff, and show how one could alleviate these problems with a new physics presumably also related to dark matter.
When propagating to Earth, UHECRs can interact with the gas in our Milky Way and produce secondary particles including photons. This can impact the search for UHE photons as we face a diffuse flux of UHE photons resulting from their propagation. This flux, together with the photon flux expected from the GZK interactions, participates in the diffuse photon flux which is limiting the detection...
Magnetized turbulence and magnetic reconnection are often invoked to explain the generation of high energy particles in astrophysics. Originally, these two routes for particle acceleration were treated as distinct plasma processes. However, with the rapid advances in computing power and theory, they are converging towards a unified domain. In this talk, I will outline recent developments in...
Understanding the transition from Galactic to extragalactic cosmic rays (CRs) is essential to make sense of the Local cosmic ray spectrum. Several models have been proposed to account for this transition in the 0.1 - 10 $\times 10^{18}$ eV range. For instance: ankle models, where the transition from a steep Galactic component to a hard extragalactic spectrum occurs in the $4-10 \times...
Cosmic rays are observed at earth with energies from less than 100 MeV to more than 100 EeV. Undoubtedly, they have many sources but we explore the minimalist possibility that they mostly derive from diffusive shock acceleration over a range of scales assocaited successively with stellar winds, supernova remnants, galactic winds and intergalactic accretion onto filaments and clusters, with...
Starburst Galaxies (SBGs) and Active Galactic Nuclei (AGNi) can launch and sustain powerful outflows of very high velocity and large opening angle.
Such winds develop a bubble structure characterized by an inner wind shock and an outer forward shock.
During the time the forward shock expands in the surrounding medium, the inner wind shock quickly decelerates while remaining strong, thereby...
Active galactic nuclei (AGNs) are one of the most promising sources for accelerating particles up to the highest energies. In this talk, we present a scenario in which cosmic rays are accelerated in multiple shocks created by the interaction of relativistic AGN jets with embedded massive stars. We solve the Fokker-Planck equation considering the spatial and radiative losses as well as the...
Tidal Disruption Events (TDEs) of massive stars are potential candidates for neutrinos and cosmic rays at the highest energies. Three Tidal Disruption Event candidates (AT2019dsg, AT2019fdr, AT2019aalc) have been recently associated with astrophysical neutrinos; they have strong dust echoes (in the infrared range) in common, with time delays which seem to be correlated with the neutrino...
High-energy neutral astrophysical messengers, such as neutrinos and photons, can be produced by the interaction of ultra-high-energy cosmic rays (UH0ECRs) with radiation fields, either during extragalactic propagation or within source environments. Neutrinos and gamma-rays can play a crucial role in the study of acceleration mechanisms of cosmic rays. In particular, after being produced,...
Experimental observations have demonstrated a strong correlation between star-forming processes and gamma-ray luminosities, giving strong hints about the nature of the Cosmic-Rays (CRs) transport mechanisms inside Starburst Nuclei (SBNs). In this talk, I will discuss the imprints on nearby Starburst galaxies (SBGs) gamma-ray spectra left by different CR transport models, quantifying the...
We test the hypothesis that starburst galaxies are the sources of ultra-high energy cosmic rays and high-energy neutrinos. The computation of interactions of ultra-high energy cosmic rays in the starburst environment as well as in the propagation to the Earth is made using a modified version of the Monte Carlo code SimProp, where hadronic processes are implemented for the first time. Taking...
In this work we investigate the astrophysical interpretation of the energy spectrum and mass composition data above $6 \times 10^{17}$ eV as measured at the Pierre Auger Observatory.
Aiming at including the “ankle” feature observed at $5 \times 10^{18}$ eV, we propose two simple scenarios in which it is generated as the superposition of different components. In both of them the flux above the...
We present the first joint fit of an UHECR source population to Telescope Array (TA) and Pierre Auger Observatory (PAO) data. We simulate the propagation of UHECRs for a wide range of source parameters and fit this to the spectrum and composition observed by both experiments. The systematic differences between the two experiments are taken into account as additional parameters of the fit. To...
The Tibet AS$\gamma$ experiment provided the first measurement of the total diffuse gamma-ray emission from the Galactic disk in the sub-PeV energy range.
Based on analysis of the TeV sources included in the HGPS catalogue, we predict the expected contribution of unresolved pulsar-powered sources in the two angular windows of the Galactic plane observed by Tibet AS$\gamma$.
We show that the...
KM3NeT is a multidisciplinary observatory, for the detection and study of cosmic neutrinos and their sources in the Universe, as well as the measurement of neutrino properties such as the mass hierarchy and oscillation parameters.
Two underwater detectors are under construction in the Mediterranean Sea. The configuration of the ARCA detector, located off-shore Sicily, Italy, is optimised...
The next generation of ultra-high energy cosmic ray observations will require large detector arrays to achieve large statistics. In order to realize next-generation large-scale detector arrays, the Cosmic Ray Air Fluorescence Fresnel lens Telescope (CRAFFT) project is developing a low-cost simple fluorescence detector (FD) The simple structure of the CRAFFT detector will reduce the cost to...
The origin and nature of ultrahigh-energy cosmic rays (UHECRs) are of uppermost importance in astroparticle physics. Motivated by the need for an unprecedented aperture for further advancements, the Fluorescence detector Array of Single-pixel Telescopes (FAST) is a prospective next-generation, ground-based UHECR observatory that aims to cover an enormous area by deploying a large array of...
As part of the ongoing AugerPrime upgrade of the Pierre Auger Observatory, we are deploying short aperiodic loaded loop antennas (SALLAs) measuring radio signals from extensive air showers in the 30-80 MHz band on each of the 1660 surface detector stations. This new Radio Detector of the Observatory allow us to measure the energy in the electromagnetic cascade of inclined air showers with...
The Global Cosmic Ray Observatory (GCOS) is a proposal for a ground-based detector to measure the properties of the highest-energy particles in the Universe with unprecedented precision after the year 2030. In this contribution we will report on the results from the GCOS 2022 workshop, in which basic parameters for a the detector design were defined and we will discuss preliminary estimates of...
UHECRs above 100 PeV might be detected from space by a mission pointing to the Earth limb when optical emission from extensive air showers is produced. Space-born detection might also play a relevant role in the multi-messenger field if detection of Earth skimming neutrinos will be ensured. The validation process for this detection of rare UHE events goes through precursors as the NUSES space...
Despite intense observational efforts and a series of important results in the last two decades, the study of ultra-high-energy cosmic rays (UHECRs) remains one of the most challenging in astronomy, both because their flux is extremely low (one particle per m$^2$ per billion year at the highest known energies) and because their macroscopic energies (tens of Joules) still remain insufficiently...
Mini-EUSO is a telescope observing the Earth from the International Space Station since 2019. The instrument employs a Fresnel-lens optical system and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity. Mini-EUSO also contains two ancillary cameras to complement measurements in the near...
Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station and viewing our planet from a nadir-facing UV-transparent window in the Zvezda module. The instrument is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for...
The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) experiment will make new measurements from suborbital space as a precursor for future space missions that will address the challenge of the extremely low fluxes of ultra-high energy cosmic rays (UHECR) and very high energy (VHE) neutrinos.
The EUSO-SPB2 detector is comprised of two 1m diameter aperture telescopes....
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) has been developed with the science goals of identifying the sources of ultra-high energy cosmic rays (UHECRs) and transient sources of cosmic neutrinos. The POEMMA observatory consists of two spacecraft flying in a loose formation in 525 km altitudes orbits, providing full-sky coverage for astrophysical sources. Each spacecraft hosts...
We present a statistical analysis of the association between UHECRs and proposed astrophysical sources. Our approach is based on the Bayesian hierarchical framework presented in Capel & Mortlock 2019, but with notable extensions. Using CRPropa3, we now include the lensing effect of the Galactic magnetic field and explore the impact of heavier compositions. This analysis directly connects to...
The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) collaboration constructs a series of balloon and orbital telescopes to detect fluorescent UV emission from the Earth atmosphere, with the primary aim to study ultrahigh energy cosmic rays (UHECRs) from space.
The detectors have wide field-of-view (more than 20 degrees FOV), high temporal resolution (1-2.5 μs) and...
Mini-EUSO is a wide Field-of-View (FoV, 44 deg) telescope currently in operation from a nadir-facing UV-transparent window in the Russian Zvezda module on the International Space Station (ISS).
It is the first detector of the JEM-EUSO program deployed on the ISS. Mini-EUSO is mainly sensitive in the 290 - 430 nm bandwidth. Light is focused by a system of two Fresnel lenses of 25 cm diameter...
Despite the great progress made by modern cosmic ray observatories, the origin and acceleration mechanism of ultra-high-energy cosmic rays (UHECRs) remains an unsolved problem to this day. However, there is experimental evidence for an anisotropic component in the UHECR arrival direction greater then few EeV. The search for UHECR sources is further complicated by two main factors: during...
The IceCube neutrino observatory measures the diffuse flux of high-energy astrophysical neutrinos by means of various techniques, and there exists a mild tension between spectra obtained in different analyses. The spectrum derived from reconstruction of muon tracks is harder than that from cascades, dominated by electron and tau neutrinos. If confirmed, this tension may provide a clue to the...
Estimation of the mass composition in ultra-high energy cosmic rays is essential to understand their origin and generation mechanism. Recent experiments are expected to discover anisotropy of the mass composition in ultra-high energy cosmic rays. Anisotropy analysis of mass composition using Xmax is currently being performed, but the problem is that the statistics of cosmic rays with Xmax...
In the current age of multimessenger astronomy, Very High Energy (VHE) cosmic neutrinos (E>1PeV) represent a unique observation window into the most extreme astrophysical events in the universe. Measurements of the neutrino flux in this high energy regime provide information regarding the distribution and composition of Ultra-High Energy Cosmic Rays (UHECR), details of source acceleration...
We present the milestones achieved by the MICRO (MultI-messenger probe of Cosmic Ray Origins) project. This multi-institute project consists of a study of bursting astrophysical sources as candidate sources for Ultra-High-Energy Cosmic Rays (UHECRs). We aim at identifying source classes that correlate best with existing observational data (direction, energy distribution, and primary mass) and...
The Pierre Auger Observatory was designed to answer the key questions about the origin and composition of ultra-high energy cosmic rays. As part of the Observatory’s upgrade, AugerPrime, a new detection system has been conceived to have direct access to the muon component of the air showers above $10^{16.5}$ eV up to the ankle-region of the energy spectrum. The Underground Muon Detector (UMD)...
Upcoming neutrino telescopes may discover ultra-high-energy (UHE) cosmic neutrinos, with energies beyond 100 PeV, in the next 10–20 years. Finding their sources would expose the long-sought origin of UHE cosmic rays. We search for sources by looking for multiplets of UHE neutrinos arriving from similar directions. Our forecasts are state-of-the-art, geared at neutrino radio-detection in...
We study neutrons produced in simulations of extensive air showers. By using the Monte Carlo simulation package FLUKA, our examination is able to extend from the highest energy neutrons down to thermal energies. Their longitudinal profiles as well as lateral distributions and arrival times at different atmospheric depths are juxtaposed for different primary species and are interpreted in the...
In air showers initiated by ultra-high-energy cosmic rays in the Earth’s atmosphere, even the secondary particles created in the start-up phase are produced at energies far above those accessible by other means. These high-energy particles can be used to search for New Physics, such as a violation of Lorentz invariance. We focus on isotropic, nonbirefringent Lorentz violation in the photon...
Pulsars have been proposed as candidate sources of high-energy cosmic rays, due to their large magnetic fields and rotational energy, and gamma-ray observations demonstrating their ability to accelerate electrons and positrons. However, a precise description of the acceleration processes at play is still to be established.
Numerical experiments, such as particle-in-cell (PIC) simulations of...
Muons produced in extensive air showers have large decay lengths and small radiative energy losses, enabling a large fraction of them to reach surface and underground detector arrays while keeping relevant information about the hadronic interactions that occurred high in the atmosphere. We can relate a muon's arrival time and position at the detector to its production distance/depth. The total...
Origins of ultra-high-energy cosmic rays (UHECRs) are still largely unknown. In particular, the "2nd knee" around $10^{17}$ eV could be related to a transition of origins from the galactic to extra-galactic sources. In this scenario, One would expect the large-scale anisotropies of UHECRs to change over the 2nd knee region. We search for large-scale anisotropies using data taken from surface...
Motivated by the ANITA report of pulses compatible with upward-going extensive air showers, we present a recent search for such showers with the Pierre Auger Observatory. The data set registered using the fluorescence detector of the Observatory is scanned to identify showers ascending from the ground. Consistently with the exit angles reported from the first and third ANITA flights, we focus...
The Pierre Auger Observatory measures several characteristics of ultra-high-energy cosmic rays (UHECRs), most importantly the energy spectrum, the distribution of maximum shower depths and the arrival directions. We use all three observables for a combined fit, in which the parameters of possible UHECR sources can be constrained.
The astrophysical model used in the fit consists of...
The energy spectrum of cosmic rays is steeply falling with a suppression of the flux at the highest energies caused by energy losses during propagation or by reaching the maximum power of cosmic accelerators. The energy spectrum at the highest energies is currently measured with high precision by two experiments, Telescope Array in the Northern hemisphere and Pierre Auger Observatory in the...
The CORSIKA 8 project aims to provide a modular, flexible, and comprehensive framework for the simulation of particle cascades in air and other media. Recent developments include the integration of the PROPOSAL code as electromagnetic interaction model, implementations of the Zas-Halzen-Stanev (ZHS) and CoREAS algorithms for simulations of radio emission, and the introduction of thinning. In...
The Tunka-Grande array is the part of the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) astrophysical complex. This complex is located in the Tunka Valley, 50 km from Lake Baikal. The scientific program of the array is devoted to the study of cosmic rays by the detection of charged particles (electrons and muons) of EAS.
In the report we present a description of...
The precise determination of the energy scale is a key part of experiments in astroparticle physics. At the Pierre Auger Observatory, the energy scale is set by the calorimetric measurement of extensive air showers with fluorescence detectors. Thus, the absolute end-to-end calibration of the fluorescence detectors is of utmost importance. In the past, this calibration was performed by...
This paper argues that production, collisions, and decays of matter in space
result in the form of particle spectra, which are measured in cosmic rays and astrophysics. Protons, nuclei, and dark matter are the known forms of matter in the Galaxy. If we understand how a high-energy proton produces protons in a collision with another proton (or antiproton), we can predict the form of the spectra...
Astrophysical candidates for the sources of ultra-high-energy cosmic rays (UHECRs) exhibit a large diversity in terms of their properties relevant for the acceleration of charged particles, such as luminosity, Lorentz factor, size and magnetic field. Yet, fits of the observed UHECR spectrum and composition often assume identical sources.
Here we investigate a population of sources with a...