

Study of the CUORE background sources: identification and prospects

Valentina Dompè 2nd year report - 17th October, 2019

Advisors: Oliviero Cremonesi Paolo Gorla

1.2

Neutrinoless double beta decay $(0\nu\beta\beta)$

- Double beta decay: rare second order • β decay $Z \rightarrow Z \pm 2$
- Allowed for certain even-even nuclei where the standard single β decay is energetically forbidden
- Two decay modes: s0.45 0.45 0.4 $|\Delta L| = 0$ two-neutrino double OBSERVED beta decay Arbitrar 2νββ 0.3 neutrinoless double $|\Delta L| = 2$ beta decay? 0.25 0.2 Standard WHAT IF OBSERVED? Model 0.15 forbidden 0.1F - Lepton number violation - Majorana nature of the 0.05 neutrino 0.2 0.4 0.6 0.8 Energy/Q Value - Constrains on absolute ν mass scale and hierarchy

(A, Z+1)

forbidden

CUORE: Cryogenic Underground Observatory for Rare Events

Search for $0\nu\beta\beta$ decay of ¹³⁰Te with cryogenic bolometers:

- Excellent energy resolution (few ‰)
- TeO₂ bolometer: ¹³⁰Te is a constituent of the detector itself $\longrightarrow \epsilon \sim 90\%$
- Signal amplitude: $\propto \Delta T = \frac{\Delta E}{C(T)}$, $C(T) \propto T^3$
- Cryogenic temperature needed (~10 mK)

CUORE: Cryogenic Underground Observatory for Rare Events

- 988 cryogenic TeO₂ bolometers
- 742 kg of total TeO₂ mass, with \sim 206 kg of ^{130}Te emitter isotope
- Bolometers working temperature: ~ 10 mK (custom built multi-stage cryostat)

CUORE background model

BACKGROUND MODEL: identify, locate and evaluate the intensity of all the sources contributing to the observed background spectra

Detailed Monte Carlo simulation

- Geometry of the experimental setup
- Radioactive sources and their locations
- Radiation interactions with the different parts of the detector
- Detector response, instrumental effects (thresholds, resolution,...)

Granularity of the detector exploited:

CUORE background model

Primary contribution to the background in CUORE: contamination of the crystal and the copper shields

- 60 background sources simulated
- Bayesian MCMC fit with flat priors (except muons):

Radioactive sources

ullet

.

TeO₂ crystals and copper contamination:

A better understanding of the amount and the position of these contaminants will improve the present background model.

- Contaminations topology
- Time dependence of the contaminations rate
- Event correlations (coincidence)
- The following preliminary analysis includes data from spring 2017 to mid-summer 2019 (~400 kg yr exposure)
- I was in charge of the online monitoring of the quality of about one third of these data

GOAL: include new input to the present background model for a precise and correct interpretation of the data and results

Degraded alpha

Part of the background in the CUORE ROI (2490 - 2575 keV) is due to degraded alphas.

ORE Preliminary

Counts/keV/kg/y

10⁻¹

10⁻²

10⁻³

 10^{-4}

Copper surface contamination α **Copper shield** α α α α **Crystal surface** contamination

Data - 86.3 kgy

Alpha contributions

 α decay: $E_{tot} = E(\alpha) + E(nuclear recoil)$

Different positions of the contaminant correspond to different signatures:

Alpha contributions

- Study of the alpha and recoil peaks positions in energy
- Fit function: Crystalball = Gaussian function (\bar{x} = mean, σ = standard dev.) with a *n* power law tail smoothly joined to the Gaussian at $\bar{x} \alpha \sigma$ (α and *n* are tail parameters)

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} e^{-\frac{(x-\bar{x})^2}{2\sigma^2}} & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot \left(B - \frac{x-\bar{x}}{\sigma}\right)^{-n} & \text{for } \frac{x-\bar{x}}{\sigma} \le \alpha \end{cases}$$

Where:
$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot e^{-\frac{|\alpha|^2}{2}}$$
 $B = \frac{n}{|\alpha|} - |\alpha|$ $N = \text{normalization factor}$
depending on α , n

Fit parameters: N, α , n, \bar{x} , σ

Alpha contributions: ²¹⁰Po

- $^{210}Po \rightarrow ^{206}Pb + \alpha$
- Events selection:
 - Multiplicity 2, single event energy spectrum
 - Cut on total energy to select the ²¹⁰Po α decay

²¹⁰Po alpha decay (nominal values)

- $E(\alpha) = 5304.38 \text{ keV}$
- E(recoil) = 103.08 keV
- $E_{tot} = 5407.46 \text{ keV}$

IORE

S

G

Alpha contributions: ²¹⁰Po

- $^{210}\text{Po} \rightarrow ^{206}\text{Pb} + \alpha$
- Events selection:
 - Multiplicity 2, single event energy spectrum
 - Cut on total energy to select the ²¹⁰Po α decay

²¹⁰Po alpha decay (nominal values)

- $E(\alpha) = 5304.38 \text{ keV}$
- E(recoil) = 103.08 keV
- $E_{tot} = 5407.46 \text{ keV}$

S

G

Alpha contributions: ²¹⁰Po

- $^{210}Po \rightarrow ^{206}Pb + \alpha$
- Events selection:
 - Multiplicity 2, single event energy spectrum

All ds spectrum M2 single energy - 210Po

- Cut on total energy to select the ²¹⁰Po α decay

²¹⁰Po alpha decay (nominal values)

- $E(\alpha) = 5304.38 \text{ keV}$
- E(recoil) = 103.08 keV
- $E_{tot} = 5407.46 \text{ keV}$

ORE

S

G

All ds spectrum M2 single energy - 210Po

Alpha contributions: ²²²Rn

- $^{222}\text{Rn} \rightarrow ^{218}\text{Po} + \alpha$
- Events selection:
 - Multiplicity 2, single event energy spectrum
 - Cut on total energy to select the ²²²Rn α decay

•
$$E(\alpha) = 5489.52 \text{ keV}$$

$$E(recoil) = 100.78 \text{ keV}$$

• $E_{tot} = 5590.30 \text{ keV}$

G

Alpha contributions: 222Rn

- $^{222}\text{Rn} \rightarrow ^{218}\text{Po} + \alpha$
- Events selection:
 - Multiplicity 2, single event energy spectrum

All ds spectrum M2 single energy - 222Rn

- Cut on total energy to select the ²²²Rn α decay

²²²Rn alpha decay (nominal values)
E(α) = 5489.52 keV
E(recoil) = 100.78 keV

 $E_{tot} = 5590.30 \text{ keV}$

All ds spectrum M2 single energy - 222Rn

Alpha contributions

- Multiplicity 2, total energy spectrum (alpha+recoil)
- Zoom on Q_{value} peaks of ²¹⁰Po and ²²²Rn alpha decay
- Green is nominal value, violet is the sum of reconstructed alpha and recoil peaks

All ds spectrum M2 total energy - 210Po

All ds spectrum M2 total energy - 222Rn

Fit results

		Fit results	Non	ninal values		ſ	OUFNCHING FACTO	\mathbf{R} (a)
²¹⁰ Po - alpha:		(5338.0±0.1) k	eV 5	304.38 keV			An α particle interaction	ng
²²² Rn - alpha:		(5515.0±0.8) k	eV 54	489.52 keV		with TeO ₂ crystals a signal that is hig	with TeO ₂ crystals gen a signal that is higher	generates 1er than
²¹⁰ Po - recoil:		(94.63±0.06) k	eV 1	03.08 keV			expected $\frac{E_{ee}}{E} \equiv e$	7
²²² Rn - recoil:		(97.6±0.6) ke∖	′ 1	100.78 keV				Dereis comune
***************************************		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				•
	Fit results Re		constructed alpha+recoil			Nominal values		
²¹⁰ Po:	(5431.0±0.1) keV		(5432.6	(5432.6±0.1) keV			5407.46 keV	
²²² Rn:	(5616.0±0.3) keV		(5613±	(5613±1) keV			5490.30 keV	

Alpha peaks: $(E_{\text{meas}}/E_{\text{nom}})_{\text{Po}} = 1.006$ • $(E_{meas}/E_{nom})_{Rn} = 1.005$ In CUORE-0 we had q=1.007; we don't expect a great difference in CUORE, this will be better quantified by studying all the possible alpha peaks

Fit results

		Fit results	Nominal values	5	OUENCHING FACTOR (a)
²¹⁰ Po -	alpha:	(5338.0±0.1) k	eV 5304.38 keV	,	An α particle interacting
²²² Rn -	alpha:	(5515.0±0.8) k	keV 5489.52 keV	/	with TeO ₂ crystals generates a signal that is higher than
²¹⁰ Po -	recoil:	(94.63±0.06) k	eV 103.08 keV		expected $\frac{E_{ee}}{E} \equiv q$
²²² Rn -	recoil:	(97.6±0.6) ke∖	/ 100.78 keV		
	Fitı	esults R	econstructed alpha+r	recoil	Nominal values
²¹⁰ Po:	(5431.0±0.1) keV (5		(5432.6±0.1) keV		5407.46 keV
²²² Rn:	: (5616.0±0.3) keV (56		(5613±1) keV		5490.30 keV

• Alpha peaks: $(E_{meas}/E_{nom})_{Po} = 1.006$ $(E_{meas}/E_{nom})_{Rn} = 1.005$ In CUORE-0 we had q=1.007; we don't expect a great difference in CUORE, this will be better quantified by studying all the possible alpha peaks

• **Recoil peaks**: evidence of a ~8 keV shift to lower energy for ²¹⁰Po recoil peak, ~3 keV for the ²²²Rn one (Different depth of the two contaminations? Not-ideal crystal response to surface contaminations?)

Fit results

	Fit results	Nominal values	OUFNCHING FACTOR	······	
²¹⁰ Po - alpha:	(5338.0±0.1) ke∖	′ 5304.38 keV	An α particle interacting	s (q)	
²²² Rn - alpha:	(5515.0±0.8) ke∖	5489.52 keV	with TeO ₂ crystals generate a signal that is higher than		
²¹⁰ Po - recoil:	(94.63±0.06) ke√	103.08 keV	expected $\frac{E_{ee}}{E} \equiv q$		
²²² Rn - recoil:	(97.6±0.6) keV	100.78 keV			
Fit	results Reco	onstructed alpha+recoil	I Nominal values		
²¹⁰ Po: (5431.	0±0.1) keV	(5432.6±0.1) keV	5407.46 keV		
²²² Rn: (5616.	0±0.3) keV	(5613±1) keV	5490.30 keV		

Alpha peaks: $(E_{meas}/E_{nom})_{Po} = 1.006$ $(E_{meas}/E_{nom})_{Rn} = 1.005$ In CUORE-0 we had q=1.007; we don't expect a great difference in CUORE, this will be better quantified by studying all the possible alpha peaks

- **Recoil peaks**: evidence of a \sim 8 keV shift to lower energy for ²¹⁰Po recoil peak, \sim 3 keV for the ²²²Rn one ٠ (Different depth of the two contaminations? Not-ideal crystal response to surface contaminations?)
- **Total energy peaks**: fit results and sum of reconstructed alpha and recoil should be the same ٠ (Better fit model needed!)

Outlook

- More precise modeling of the peaks
- Include fit systematics
- Study of other alpha peaks and calculation of quenching factor in CUORE
- Study of other recoil peaks and investigation of shifts origin
- Study of contaminations rate vs time, positions, ...