Stochastic Cosmological Background Study with 3G Gravitational Wave Detectors : Probing the Very Early Universe

Second Year PhD Progress Report

Ashish Sharma^{1,2}and Jan Harms^{1,2}

¹Gran Sasso Science Institute (GSSI), I–67100 LAquila, Italy ²INFN, Laboratori Nazionali del Gran Sasso, I–67100 Assergi, Italy

Outline

- Motivation
- Stochastic background
- Cosmological source of GWs
- Best-fit subtraction
- Projection method
- Results
- Conclusion

Motivation

- A GW stochastic background may be next class signal detected.
- It would be a statistical detection, confidence level will grow with the observation time.
- Produced very shortly after big bang.
- Carry Information to study early universe phenomenon not accessible by EM ways.
- signals will help us to understand the characteristics of the primordial signals, the fundamental physics and the evolution of the Universe.

Stochastic Background

• An incoherent superposition of large number of resolved and unresolved sources defined by statistical properties, isotropic, unpolarized, stationary and Gaussian.

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\ln f} , \ \rho_c = \frac{3 c^2 H_0^2}{8\pi G}$$

- Uncorrelated gravitational wave sources can be of astrophysical or cosmological sources.
- Cosmological: Signal of Early Universe
 - Inflationary epoch
 - Phase transitions
 - Cosmic Strings
- Astrophysical
 - Supernovae
 - Magnetars
 - Binary Objects (BH, NS)

Energy Spectra of SCGW Backgrounds

LVC, Nature 460, 990-994 (2009)

BBH Background Spectrum

Sensitivity Level for GW Detectors

T. Regimbau et al, PRL 118 (2017) 15, 151105

Luminosity Distance and Binary mass Distribution

Ashish Sharma

Subtraction- Noise Projection Method

- This method is based on a geometrical interpretation of matched filtering and allows to access the weak signals like a stochastic GW background, irrespective of the residual noise in the data.
- How we used this method
 - Injections: Generated a frequency domain strain containing the instrumental noise and signal for 1000 binary black-holes (BH).
 - Subtraction: Performing the parameter estimation to best-fit waveform, which will give us residual noise data after subtraction
 - Projections: Using residual noise data and Fisher matrix to perform the projection method to project out the residual noise data and search for stochastic background.

Fisher Matrix : Signal Model and It's derivatives

$$\Gamma_{\alpha\beta} = \left\langle \partial_{\alpha} T^{m} \middle| \partial_{\beta} T^{m} \right\rangle$$

$$\Gamma_{\alpha\beta} = 2 \int_0^\infty df \, \frac{Re(\partial_\alpha T^m(f)\partial_\beta T^{m^*}(f))}{S^n(f)}$$

- T^m represent the signal model depending on λ^{α} parameters used to analyse the data.
- Fisher matrix defined the manifold of all physical waveform of binary objects.
- Normalized Fisher matrix and Inverse Fisher matrix are computed to define the subtraction noise projection operator.

Projection of Subtraction Errors

 $P = 1 - \Gamma^{\alpha\beta} |\partial_{\alpha}H\rangle \langle \partial_{\beta}H|$ **Projection operator** Projected data stream $PT^{residual}(f) = T^{residual}(f) - \Gamma^{\alpha\beta} \left\langle \partial_{\beta}T^{m} \left| T^{residual} \right\rangle \partial_{\alpha}T^{m}(f) \right\rangle$ $\mathcal{T}_i^{\mathrm{s}}(t_N)$ T_i^{s} T_{i}^{n} T_i^n $\mathcal{T}^{\mathrm{n}}_{i\,\parallel}$ $\mathcal{T}^{\mathrm{m}}_i(ec{\lambda})$ λ^{eta} λ^{α} $T_i^{\rm s}(t_1)$

Overlap Reduction Function And Optimal Filter

Ashish Sharma

Detector Sensitivity After Subtraction-Noise Projection

Conclusion

- Subtraction noise projection method is effective in reducing the residual noise data.
- Geometrical Interpretation of matched filtering and parameter estimation easy and realistic approach for such a method.
- Increasing the possibility of detecting a cosmological background signal with third generation gravitational wave detectors.

Plan for Following Year

- Testing efficiency of projection method on low-SNR CBC signals.
- Check compatibility of subtraction-noise projection methods with arbitrary waveforms and compare the dependence of the subtraction and projection on the model for search.
- Injection of different types of primordial backgrounds into data and assess their detectability with 3G networks, sensitivity of 3G detectors network towards stochastic backgrounds with and without the projection.
- Comparing the projection method with alternative approaches (computationally expensive full Bayesian analysis of a CBC foreground + primordial background).
- Implementing the projection pipeline in existing LIGO/Virgo codes.

