

esa

Planck results, curiosities and tensions in the ACDM model

- Planck 2018 results. I. Overview, and the cosmological legacy of Planck
- Planck 2018 results. II. Low Frequency Instrument data processing
- Planck 2018 results. III. High Frequency Instrument data processing
- Planck 2018 results. IV. CMB and foreground extraction
- Planck 2018 results. VI. Cosmological parameters
- Planck 2018 results. VIII. Gravitational lensing
- Planck 2018 results. X. Constraints on inflation
- Planck 2018 results. XI. Polarized dust foregrounds (submitted)
- Planck 2018 results. XII. Galactic astrophysics using polarized dust emission
- Planck 2018 results. V. Legacy Power Spectra and Likelihoods (Aug. 2019)
- Planck 2018 results. VII. Isotropy and statistics
- Planck 2018 results. IX. Constraints on primordial non-Gaussianity

http://www.cosmos.esa.int/web/planck/publications

Silvia Galli

IAP

on behalf of the Planck Collaboration

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The $\rm H_0$ problem and the σ_8 discrepancies
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The $\rm H_0$ problem and the σ_8 discrepancies
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

Hu & White (2004); artist: B. Christie/SciAm; available at http://background.uchicago.edu

Hu & White (2004); artist: B. Christie/SciAm; available at http://background.uchicago.edu

CMB Polarization

Polarization generated by local quadrupole in temperature. Sources of quadrupole:

- Scalar: E-mode
- Tensor: E-mode and B-mode

V.J.K

The Planck satellite

3rd generation full sky satellites (COBE, WMAP) Launched in 2009, operated till 2013. 2 Instruments, 9 frequencies.

LFI:

 22 radiometers at 30, 44, 70 Ghz.

HFI:

50 bolometers (32 polarized) at 100, 143, 217, 353, 545, 857 Ghz.
30-353 Ghz polarized.

- 1st release 2013: Nominal mission, 15.5 months, Temperature only (large scale polarization from WMAP).
- 2nd release 2015: Full mission, 29 months for HFI, 48 months for LFI, Temperature + Polarization, large scale pol. from LFI.
 Intermediate results 2016: low-l polarization from HFI
- 3nd release 2018: Full mission, improved polarization, low/high-l from HFI. Better control of systematics specially in pol., still systematics limited.

2018 Power spectra planck TT, TE, EE: different likelihoods at low-I (<30) and high-I (>30). Better systematics modeling in polarization 6000 Not used Low+high-I: some 140 TE 8 changes, but impact on 5000 parameters is almost 70 negligible 4000 $\mathcal{D}_{\ell}^{TT} \left[\mu \mathbf{K}^2 \right]$ $\mathcal{D}_{\ell}^{TE} \; [\mu \mathrm{K}^2]$ 3000 2000 -70 **Beam leakage**, 1000 polarization -4 -140 efficiencies 0 1500 500 2000 10 30 1000 2500 1000 1500 2000 10 30 500 **High-I** Low-l High-l Low-Added bin at L=8-40. Improved 40 0.2 1.6 ΦΦ Map- $[L(L+1)]^2/(2\pi) C_L^{\phi\phi} [10^{-7}]$ making 1.4 30 and sims 1.2 1.0 20 0.1 0.8 10 0.6 Beam leakage, 0.4 0 polarization 0.2 0 efficiencies 100 1000 500 1000 1500 30 2000 10 L **High-I** Low-l

6 ACDM parameters

Initial conditions A_s, n_s:

planck

- Acoustic scale of sound horizon $\boldsymbol{\theta}$
- Reionization τ
- Dark Matter density $\Omega_c h^2$
- Baryon density $\Omega_{b}h^{2}$

Assumptions:

- Adiabatic initial conditions
- Neff=3.046

- 1 massive neutrino 0.06eV.
- Tanh reionization ($\Delta z=0.5$)

Baseline ACDM results 2018

(Temperature+polarization+CMB lensing)

	Mean	σ	[%]
$\Omega_b h^2$ Baryon density	0.02237	0.00015	0.7
$\Omega_c h^2$ DM density	0.1200	0.0012	1
100θ Acoustic scale	1.04092	0.00031	0.03
au Reion. Optical depth	0.0544	0.0073	13
<pre>In(A_s 10¹⁰) Power Spectrum amplitude</pre>	3.044	0.014	0.7
n _s Scalar spectral index	0.9649	0.0042	0.4
H ₀ Hubble	67.36	0.54	0.8
$\Omega_{\rm m}$ Matter density	0.3153	0.0073	2.3
O ₈ Matter perturbation amplitude	0.8111	0.0060	0.7

Robust against changes of likelihood, <0.5σ.

- Most of parameters determined at (sub-) percent level!
- Best determined parameter is the angular scale of sound horizon θ to 0.03%.
- τ lower and tighter due to HFI data at large scales.
- n_s is 8σ away from scale invariance (even in extended models, always >3σ)
- Best (indirect) 0.8% determination of the Hubble constant to date.

Take away message stable across releases planck TT 2018 (DR3) TT 2016 TT 2015 (DR2) TT 2013 (DR1) _ _ _ -Changes across releases compatible with statistical fluctuations and systematics 0.02240.1140.1200.0216 0.1261.0401.042corrections. $\Omega_b h^2$ $\Omega_c h^2$ $100\theta_{MC}$ Λ CDM is a good fit to the 0.945 0.960 0.975 0.990 3.00 3.06 3.12 3.18 0.040.080.12 $\ln(10^{10}A_s)$ n_s data auNo evidence of preference for classical extensions of ACDM 0.8165.067.570.0 0.780.840.87 1.801.841.881.92 $10^9 A_s e^{-2\tau}$ H_0 σ_8 Just a few (2-3 σ) outliers.

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The $\rm H_0$ problem and the σ_8 discrepancies
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

Good consistency with BAO, RSD, SnIa, BBN

planck

ICK

Strong tension between early and late universe probes of H₀.

planck

- Statistical fluctuation unlikely
- Systematics in distance ladder and time delays?
- Systematics in CMB and BAO?
- New physics

Systematics in direct measurements?

- H_0 reanalysis of the Riess (2011/2016) data:
 - Zhang et al. 2017 (arXiv:1706.07573v1): Riess 2011 data,global fit, impact of systematics from cepheids (outliers, anchors, period) and SNIA. Applied on R11, finds $H_0 = 72.5 \pm 3.1(stat) \pm 0.77(sys) \text{ km/s/Mpc}$
 - Follin & Knox 2017 (arXiv:1707.01175) (modelling of cepheid photometry. $H_0=73.3 \pm 1.7$ (stat) km/s/Mpc)
 - Cardona et al. 2017 (arxiv:1611.06088): Bayesian hyper-parameters for outlier rejection. $H_0 = 73.75 \pm 2.11 \text{ km/s/Mpc}$
 - Feeney et al. 2017 (arXiv:1707.00007): Bayesian hierarchical model, impact of non-gaussian likelihoods. $H_0 = 72.72 \pm 1.67 \text{ km/s/Mpc}$
 - Dhawan et al 1707.00715.pdf. Use of NIR observations of a subsample of the Riess 2016 supernovae (9/19 for the intermediate calibration rung, 27/300 SN in the Hubble flow). $H_0=72.8 \pm 1.6$ (stat.) ± 2.7 (syst.) km/s/Mpc.

H₀ consistently high! But there are still remaining issues

A few examples of open debates in late time measurements

- 1. Direct distance ladder measurements:
 - a. For tip of the red giants branch: extinction of TRGB in large magellan cloud overestimated (Yuan+ 2019) which underestimated H0. Reply from Freedman+ 2020: that analysis is wrong. Still open debate.
 - b. For cepheids: differences in photometry of cepheids (observed in crowded environments) between first and second ladder might bias results.
 - c. For SNIA in general: SN brighness might be different in galaxies with different ages=> bias between 2 and 3rd step of the ladder (Rigault 2018, 2015). Reply from Jones+ 2015: nope that effect is too small. Still open debate.
- 2. Time delays measurements: uncertainties in lens modeling might be underestimated (see eg. Kochanek 2019, Blum+ 2020).

planck

Systematics in the CMB ? Consistency between different experiments

Planck vs WMAP

Planck vs SPT-SZ

Planck full-sky

Aylor et al. 2017 arXiv:1706.10286 Hou et al. 2017 arXiv: 1704.00884

planck

- Are these consistent with the low H₀ Planck measurement? When adding BAO, yes!
 - Combining WMAP ACT and SPT with BAO to decrease errors low H₀
 - WMAP9+BAO (BOSSDR11+6dFGS+Lyman α)+high-z Sne

 $H_0 = 68.1 \pm 0.7$ (Aubourg+ 2015)

• WMAP9+ACT+SPT + BAO (BOSS DR11+6dFGS)

 $H_0 = 69.3 \pm 0.7$ (Bennet+ 2014)

Planck, WMAP and SPT are consistent with each other.

*NB: these were obtained using slightly different assumptions for neutrino mass and optical depth w.r.t. Planck, see also Calabrese+16

A giant void in ACDM cannot explain it

Peculiar velocities. If we live in a large void and peculiar velocities are not properly taken into account when measuring redshifts, the local measurements of H₀ might be biased (e.g. Keenan 2013, Romano+ 2016). However, simulations show it would need to be a very atypical void (e.g. Marra+ 2013, Wojtak+ 2013, Odderskov+ 2016, Wu+ 2017), sample variance at the level of ~0.3km/s/Mpc. Supernovae at different redshifts do not show any deviation.

Indirect measurement of the Hubble constant from the CMB

Calculate the **physical dimension of sound horizon** assumes model for sound speed and expansion of the universe before recombination (after measuring ω_m and ω_b)

planck

Early and late time solutions

1. Change in late time universe

- (late-time dynamics of dark matter and/or dark energy, e.g. dynamical dark energy, decaying DM (Poulin+ 2018, Vattis+ 2019) interacting dark matter-dark energy etc..) => highly constrained by BAO, Supernovae and other probes.
- Modified gravity changes to Cepheid period-luminosity relation (Desmond et al. 1907.03778)=> but might be constrained by time delays.

See also e.g. Bernal +2016, Lemos+ 2018, Aylor 2018

1. Change in the early time physics. BAO and CMB measure angles, assuming calculation of sound horizon r_s one can infer the distances and thus $H_0 =>$ changing r_s can change inferred H_0 , but hard because usually these models impact other observables as well.

Early universe proposed solutions

- Number of relativistic species CMB is sensitive to radiation density. N_{eff} is radiation density other than photon. N_{eff} =3.046 (standard).
- Non-standard could be radiation (sterile neutrino, light relics) or nonstandard thermal history.
- Planck 2018 constraint consistent to standard value.
- Proposed as possible solution to H_0 tension (N_{eff} - H_0 degeneracy)
- Tension remains still at $\sim 3\sigma$
- **Early Dark Energy** model (Poulin et al 1811.04083), but also Smith +2019, Agrawal+ 2019 but many others.
- **Neutrino strong interaction** model (Kreisch et al. 1902.00534) (but bimodal and interactions order of magnitude stronger than standard weak ones).

planck

Planck TT,TE,EE+lowE+lensing+BAO $N_{\rm eff} = 2.99 \pm 0.17$ $H_0 = (67.3 \pm 1.1) \, {\rm km \, s^{-1} Mpc^{-1}}$

Problems with the early dark energy solution. Planck alone +LSS+SH0ES +LSS

Constraints on EDE $(n = 3)$ for varying data sets							
Parameter	Planck 2018	Planck 2018	Planck 2018	Planck 2018	Planck 2018		
	TT+TE+EE	TT+TE+EE,	TT+TE+EE,	TT+TE+EE,	TT+TE+EE,		
		CMB lensing, BAO,	CMB lensing, BAO,	CMB lensing, BAO,	CMB lensing, BAO,		
		RSD, SNIa,	RSD, SNIa,	RSD, SNIa,	RSD, SNIa,		
		and SH0ES	SH0ES,	SH0ES,	DES-Y1,		
			and DES-Y1	DES-Y1,	and HSC, KiDS (S_8)		
				and HSC, KiDS (S_8)	(no SH0ES)		
$f_{ m EDE}$	< 0.087	0.091 ± 0.034	$0.067^{+0.033}_{-0.035}$	$0.052^{+0.031}_{-0.032}$	< 0.053		
$\log_{10}(z_c)$	$3.66^{+0.28}_{-0.24}$	$3.63^{+0.17}_{-0.11}$	$3.70^{+0.20}_{-0.17}$	$3.75 {}^{+0.27}_{-0.23}$	> 3.17		
$ heta_i$	> 0.36	$2.53^{+0.35}_{-0.20}$	$2.47^{+0.42}_{-0.44}$	$2.34_{-0.74}^{+0.53}$	> 0.34		
$H_0 \mathrm{[km/s/Mpc]}$	$68.29^{+1.02}_{-1.00}$	70.73 ± 1.07	$70.33^{+1.05}_{-1.08}$	$70.00^{+0.99}_{-0.97}$	68.75 ± 0.50		
σ_8	$0.8198 {}^{+0.0109}_{-0.0107}$	0.8320 ± 0.0107	0.8200 ± 0.0103	0.8126 ± 0.0095	0.8050 ± 0.0064		

Hill 2020+

- 1. Planck alone does not prefer early dark energy solution. Planck+LSS excludes early dark energy since it increases σ_8 through increase in $\Omega_c h^2$.
- 2. Requires early dark energy to kick in at a very fine tuned redshift around matter-radiation equality, and to then dilute faster than radiation.

Discrepancy with weak lensing data?

$$S_8 = \sigma_8 \sqrt{\Omega_{\rm m}}/0.3,$$

Planck 2018 TTTEEE+lowE +CMB lensing $S_8 = 0.832 \pm 0.013$

Joudaki+ 2019 (DES+KiDS) S₈ = 0.762+0.025 [2.6 σ]

Numbers change for different experiments and data combinations

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The $\rm H_0$ problem and the σ_8 discrepancies
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

Residuals TT with respect to LCDM Well behaved residuals, very good χ^2 (unbinned coadded*

at I=30-2508 PTE=16% dof=2478).

TT+lowITT+lowE

(lowITTnot shown in this plot)

planck

Residuals of the coadded CMB spectrum, assuming the ACDM best fit cosmology and foreground model (coadded~weighted average of foreground cleaned 100x100, 143x143, 143x217 and 217x217 spectra)

 $*[\chi^2$ slightly different because for full-frequency binned

CMB lensing and A_{Lens}

- Lensed CMB power spectrum is a convolution of unlensed CMB with lensing potential power spectrum=>smoothing of the peaks and throughs.
- A_L is a consistency parameter, which rescales the amplitude of the lensing potential which smooths the power spectrum.

$$C^{\Psi}_{\ell}
ightarrow A_L C^{\Psi}_{\ell}$$
 Calabrese+ 2008

 $[L(L+1)]^2/(2\pi) C_L^{\phi\phi} [10^{-7}]$

 Lensing is better measured taking the 4point correlation function of the CMB maps, since lensing breaks isotropy of the CMB, giving a non-gaussian signal.

See e.g. Lewis & Challinor 2006

Peak smoothing in the power spectra

- A₁ is an unphysical parameter used for consistency check.
- Since 2013 preference for high value, TT spectrum prefers 2.4σ deviation from 1.
- $A_{\rm L} = 1.243 \pm 0.096$ (68 %, *Planck* TT+lowE),
- Not really lensing, not preferred by CMB lensing reconstruction.
- Preference for higher lensing projects into small deviations in extensions which have analogous effect on lensing (Ω_k , w, Σm_v).
- Adding polarization, A_L degenerate with systematics corrections and thus likelihood used.

 $A_{\rm L} = 1.180 \pm 0.065$ (68 %, *Planck* TT,TE,EE+lowE) $A_{\rm L} = 1.149 \pm 0.072$ (68 %, TT,TE,EE+lowE [CamSpec])

Different treatments of systematics in polarization (as done in our two likelihoods) can impact extensions of Λ CDM at ~0.5 σ level.

Residuals TT

 A_L is a phenomenological parameter which allows to better fit both the high and low-ell by $\Delta\chi^2 = 5.3$ ($A_L = 1.24 \pm 0.1$) (plus $\Delta\chi^2 = 2.3$ from lowl TT)

The features which lead the the high Alens could just be due to statistical fluctuations! In other words, Alens might just be fitting noise/cosmic variance.

planck

The difference between low and high-I, the deviation in A_L , Ω_k , w, and MG with Planck power spectra alone all fit similar features in the power spectra.

However, fitting these features with these parameters is in disagreement with other datasets.

Curvature, dark energy, modified gravity etc..

- Curvature $\Omega_k < 1$, phantom dark energy w<-1, modified gravity etc.. can allow larger lensing amplitude, thus preferred by Planck spectra at the 2-3 σ level.
- In the baseline likelihood configuration, the delta-chi2 between Λ CDM and Λ CDM + Ω_k is 11. With a different correction for systematic effects, it reduces to 5.
- Thus, deviation from ΔCDM depends somewhat on systematic effects.
- Furthermore, when adding CMB lensing reconstruction, less preference for deviations, further tightened by BAO.

 $\Omega_K = 0.0007 \pm 0.0019$

(68 %, TT,TE,EE+lowE +lensing+BAO).

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The $\rm H_0$ problem and the σ_8 discrepancies
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

Can the A_L deviation solve the tensions with other probes?

Riess+ 2019 $H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Joudaki+ 2019 **S**₈ = 0.762+0.025

Planck TT+lowIEE 2018	H ₀	S ₈	AL
ΛCDM	66.88 ± 0.92 [4.2 σ]	0.840 ± 0.024 [2.3 σ]	1.
Λ CDM+Alens	68.9 ± 1.2 [2.7 σ]	0.788 ± 0.029 [0.6 σ]	1.24±0.096
Planck TTTEEE +lowIEE 2018			
ΛCDM	67.27 ± 0.60 [4.2 σ]	0.834 ± 0.016 [2.4 σ]	1
Λ CDM+Alens	68.28 ± 0.72 [3.6 3]	0.804 ± 0.019 [1.3 σ]	1.180 ± 0.065

For $H_{0_{i}}$ not that much. Tension remains at the 3.6 σ level.

For $S_{8_{i}}$ it could help, but it does not help in disantangling whether this is a statistical fluctuation in Planck and WL exp., a systematic or new physics.

The future is bright and full of new data!

planck

Conclusions

plai

- Correction in systematics in the legacy release have improved spectacularly the robustness of the Planck results.
- 2. The Λ CDM model is an excellent fit to the data.
- 3.Curiosities in the Planck data remain at the 2-3s level, and cannot explain the H_0 tension (partly related to the S_8 one.)

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

