Tracing Large Scale Structure with angular cross-correlation of GWs and HI line for cosmology

Matteo Schulz matteo.schulz@gssi.it

In collaboration with:

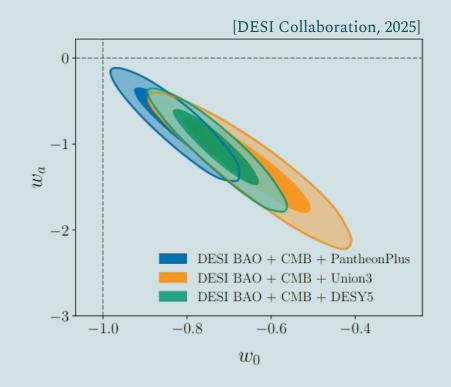
Riccardo Murgia, Jan Harms, Andrea Cozzumbo, Ulyana Dupletsa, Simone Mastrogiovanni, Tommaso Ronconi, Marta Spinelli

Current Cosmological Framework

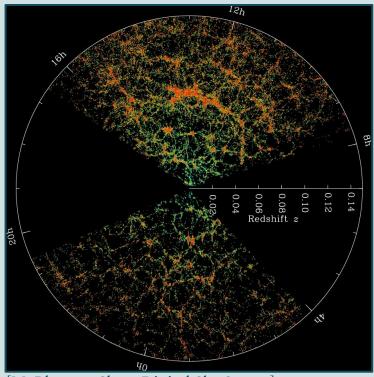
ACDM incredibly successful

Dark sector remains unknown, giving rise to discrepancies

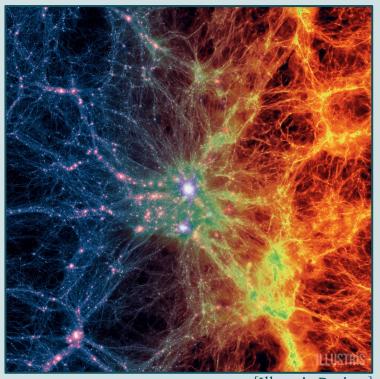
Developing alternative well-motivated models to restore cosmological concordance.



Large Scale Structure (LSS)



[M. Blanton, Sloan Digital Sky Survey]



[Illustris Project]

Standard Approach: GW x Galaxy Surveys

→ Fundamental assumption:

Both GW sources and galaxy population follow the same underlying DM distribution

- Galaxy Surveys:
 Clustering statistics in redshift space;
- GWs:
 Clustering statistics in luminosity distance space

Cross-correlation in a multi-tracer perspective to unlock cosmological information

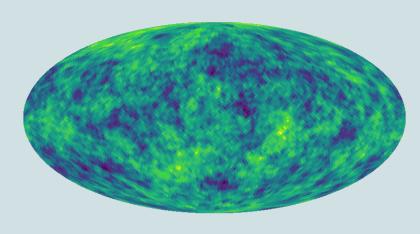
Key point of the approach

Access to properties of two
different tracers of the same
underlying density field in
two different spaces

Combination of data requires the conversion between z and d_L : Cross-correlation is maximised only when the **correct distance-redshift** relation is adopted

Constraints on cosmological parameters

Using neutral hydrogen intensity mapping as new LSS tracer



Why HI is interesting?

- Covers large cosmological volumes with respect to resolved galaxy surveys, in fast and inexpensive way;
- 2) Spectroscopic precision in redshift distribution;
- 3) Precise measurement of matter abundance thank to intensity of the line;
- 4) Upcoming future observatory (SKAO)

Angular Power Spectrum Formalism

Computing tomographic cross-correlation by looking at the angular power spectrum: C_{ℓ}

$$\delta^{X}(\theta, \phi, x) = \frac{\rho^{X}(\theta, \phi, x) - \langle \rho^{X} \rangle(x)}{\langle \rho^{X} \rangle(x)}$$

$$ightarrow$$
 advantage of naturally including effects $coming from large angular separations, which are closely tied to cosmology and $C_{\ell}^{X}(x) = \langle a_{\ell m}^{X}(x)^{2} \rangle = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m}^{X}(x)^{2}$ its evolution$

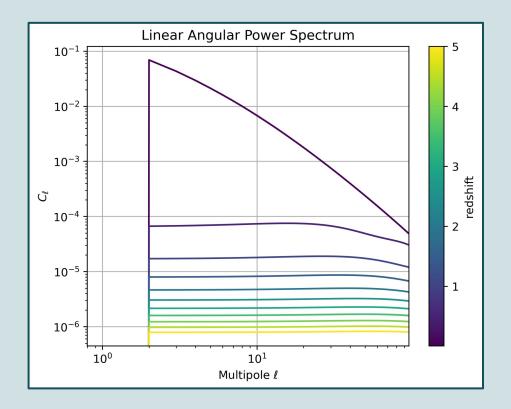
$$\delta^X(\theta,\phi,x) = \sum_{\ell=0}^{+\infty} \sum_{m=-\ell}^{\ell} a_{\ell m}^X(x) Y_{\ell m}(\theta,\phi)$$

soming from large angular separations

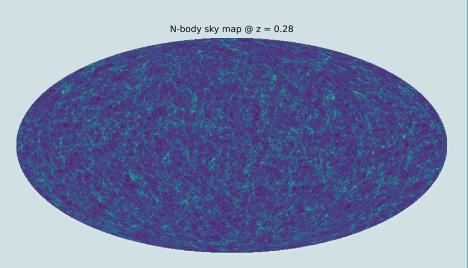
$$C_{\ell}^{X}(x) = \langle a_{\ell m}^{X}(x)^{2} \rangle = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} a_{\ell m}^{X}(x)^{2}$$

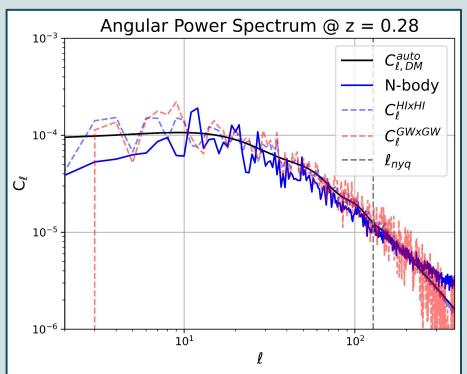
Simulating the maps

CLASS simulates the evolution of linear perturbations and provides the angular power spectrum of the underlying dark matter distribution for each redshift bin

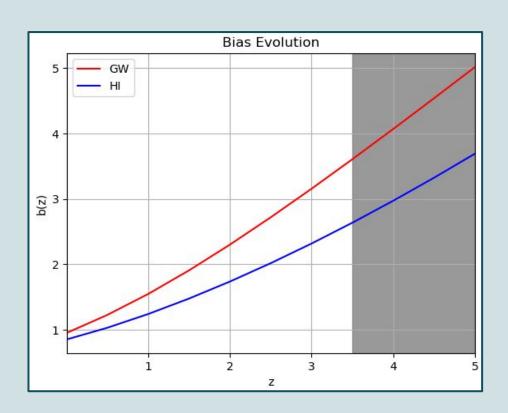


Linear theory vs. N-body





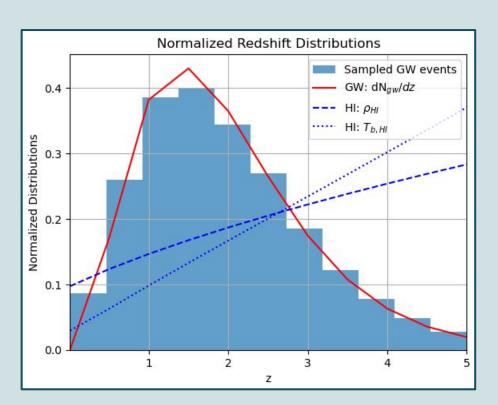
Maps creation: bias



$$bias_{GW}(z) = a_{gw}exp(b_{gw}z^{d_{gw}}) + z^{c_{gw}}$$

$$bias_{HI}(z) = a_{hi}(1+z)^{b_{hi}} + c_{hi}$$

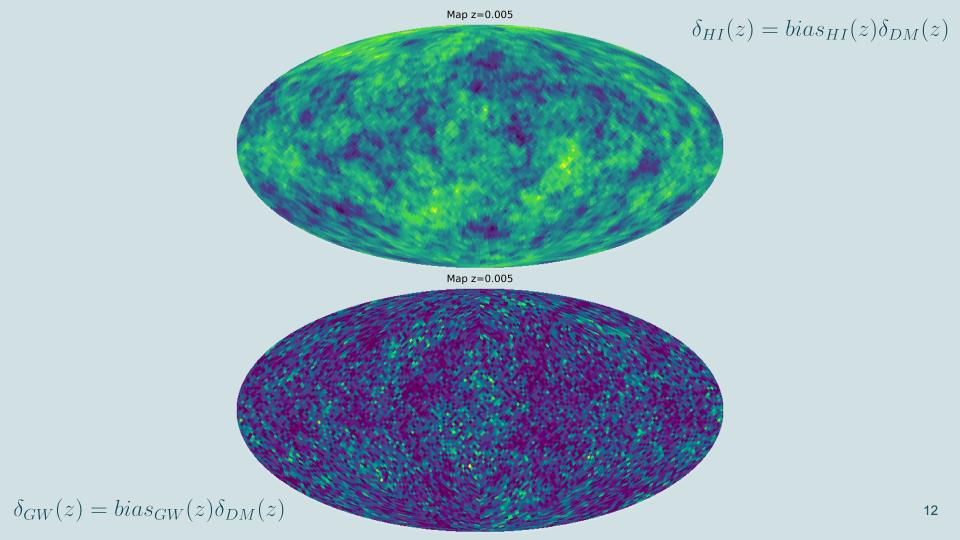
Maps creation: tracers redshift distribution

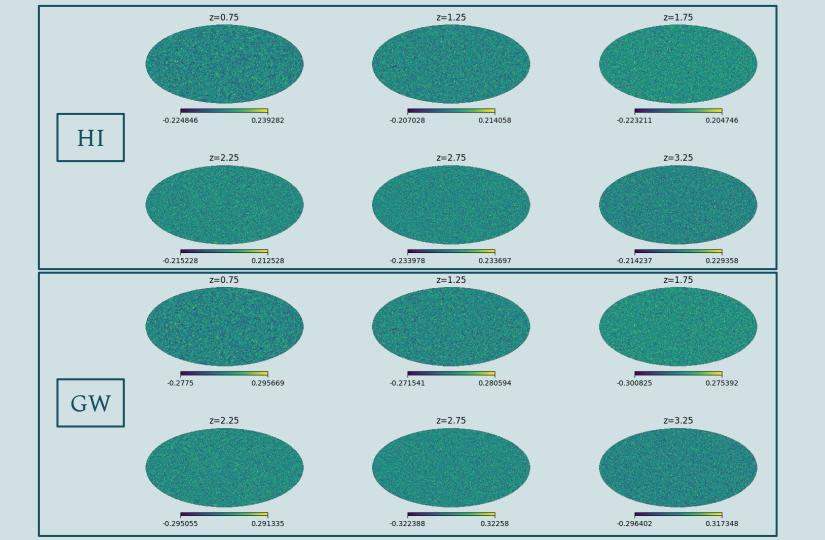


$$\frac{dN_{gw}}{dz} = A_{gw}z^{B_{gw}} \exp(-C_{gw}z)$$

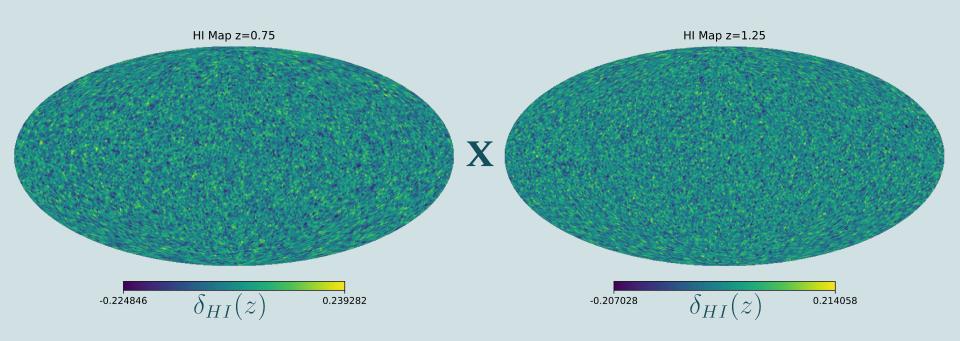
$$\rho_{HI}(z) = 4 \times 10^{-4} (1+z)^{0.6} \rho_{crit,0}$$

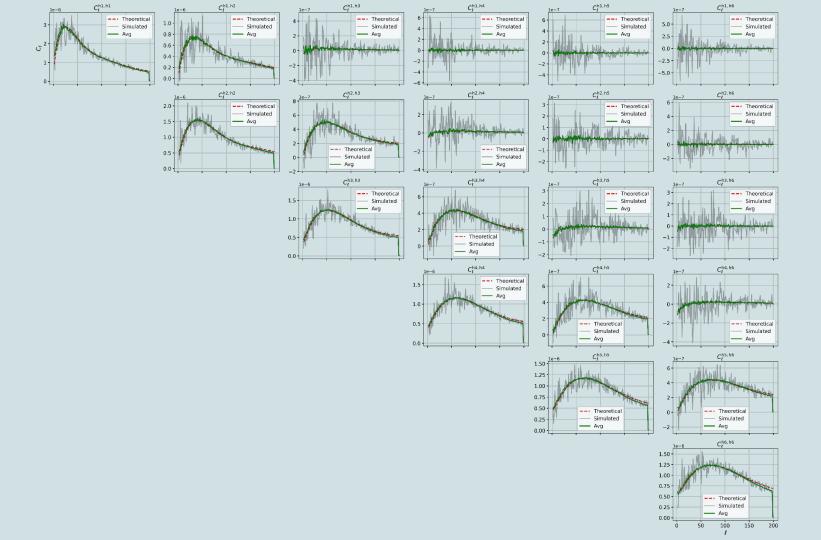
$$T_{B,HI}(z) = 44\mu T \left(\frac{\rho_{HI}(z)h}{2.45 \times 10^{-4}\rho_{crit,0}}\right) \frac{(1+z)^2}{E(z)}$$

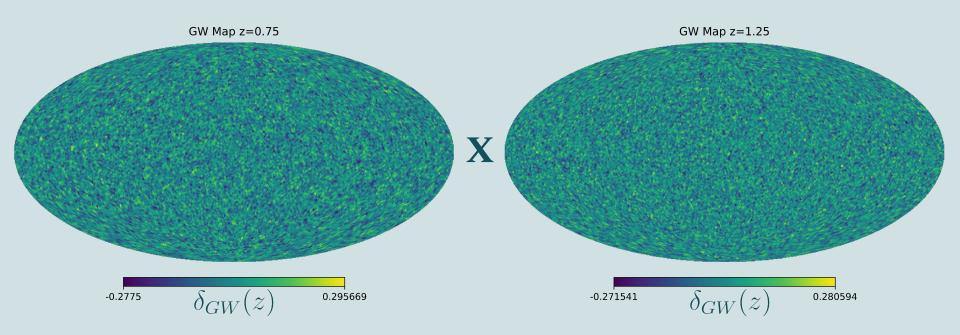


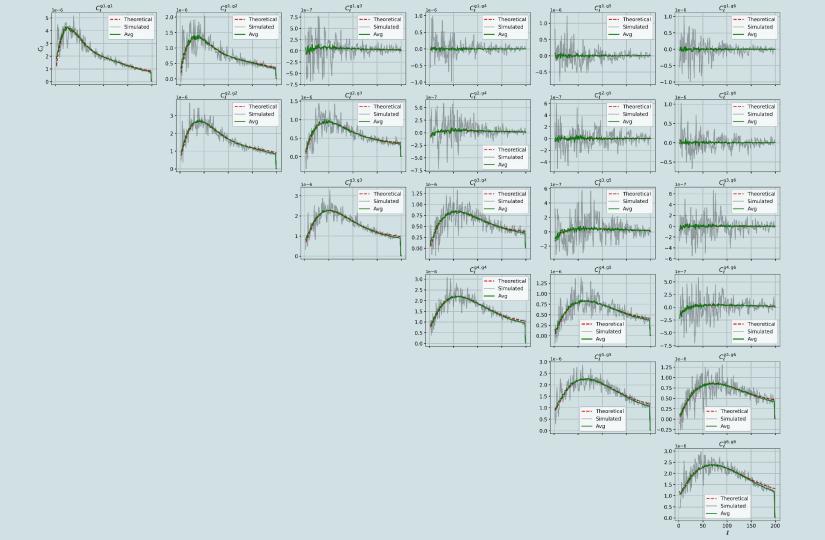


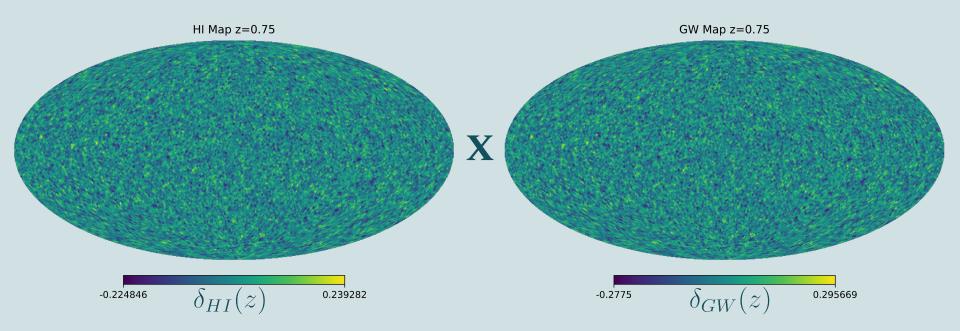
Extracting Correlations

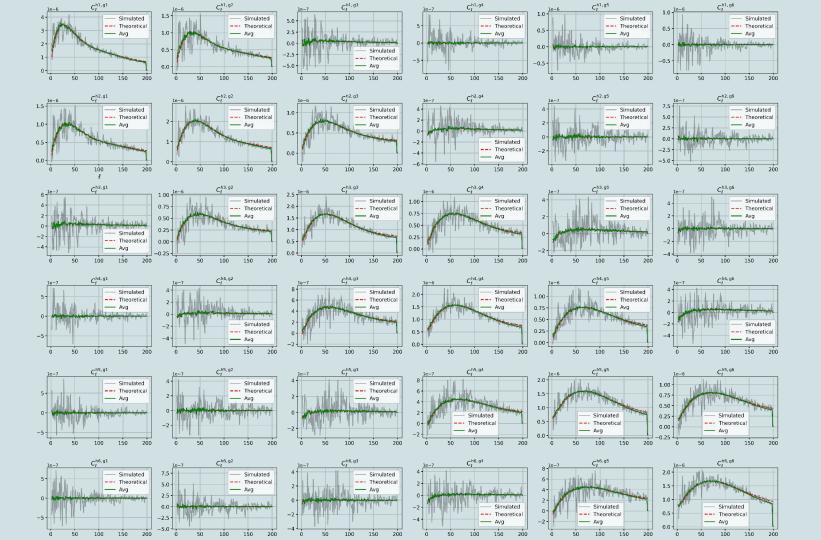


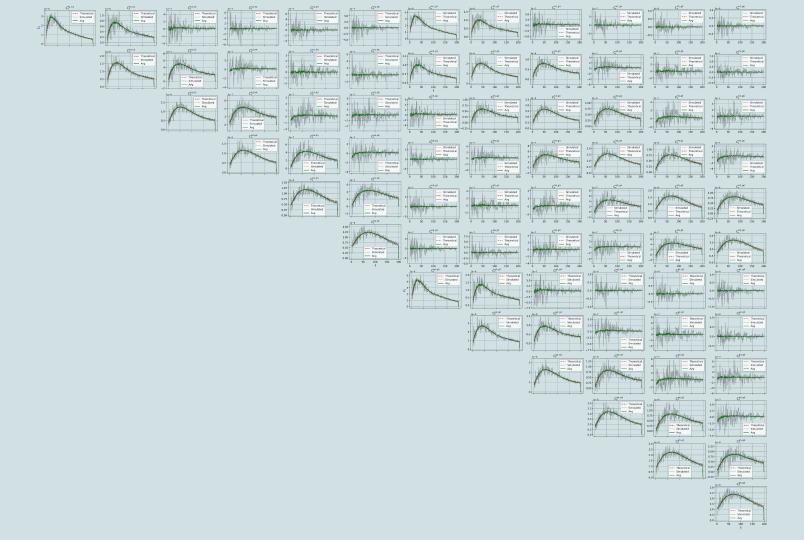




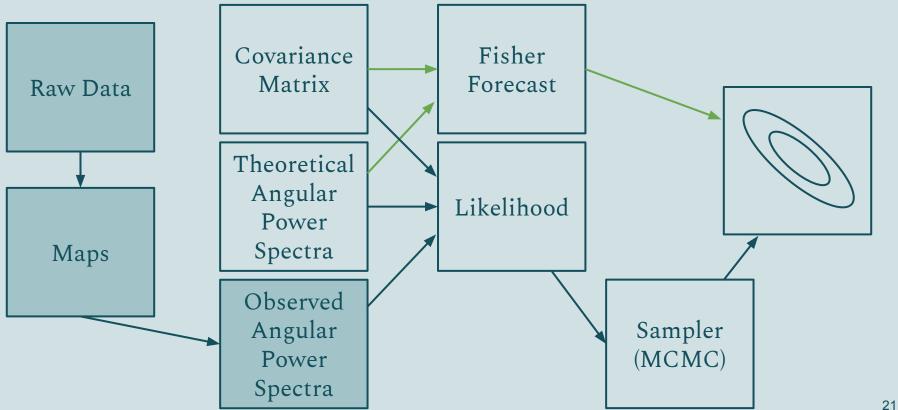








Likelihood Formalism



Likelihood Formalism and Evaluation

Theoretical Angular Power Spectra

$$C_l^{XY}(x_i, x_j) = \int_{z_{min}}^{z_{max}} \frac{cdz}{H(z)r^2(z)} \tilde{W}^X(z, x_i) \tilde{W}^Y(z, x_j) P\left(\frac{\ell + 1/2}{r(z)}, z\right)$$

$$\tilde{W}^{X}(z,x_{i}) = J_{X}(z)b_{X}(z)w^{X}(z,x_{i})\frac{H(z)}{c} \qquad w^{X}(x,x_{i}) = W^{X}(x,x_{i})\frac{dN_{obs}^{X}}{dx}\frac{1}{\int dx'W^{X}(x',x_{i})\frac{dN_{obs}^{X}}{dx'}}$$

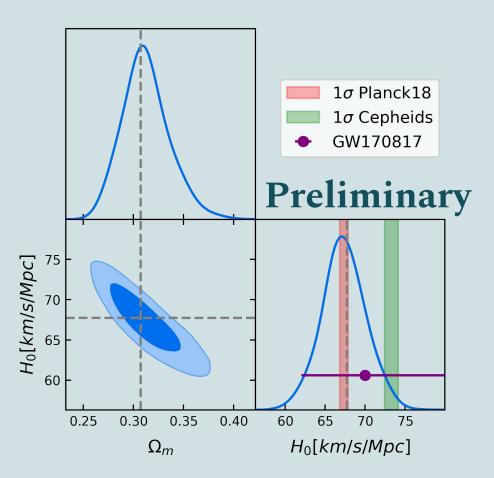
Covariance Matrix

$$\begin{bmatrix} C_{\ell} = (C_{\ell}^{XX}(x_{1}, x_{,1}), C_{\ell}^{XX}(x_{1}, x_{,2}), ..., C_{\ell}^{XX}(x_{n}, x_{,n}), C_{\ell}^{XY}(x_{1}, x_{,1}), ..., C_{\ell}^{XY}(x_{n}, x_{,m}), C_{\ell}^{YY}(x_{1}, x_{,1}), ..., C_{\ell}^{YY}(x_{n}, x_{,m}))^{T} \\ [Cov(\ell)]_{IJ} = C_{\ell}^{I_{1}J_{1}} C_{\ell}^{I_{2}J_{2}} + C_{\ell}^{I_{1}J_{2}} C_{\ell}^{I_{2}J_{1}} \end{bmatrix}$$

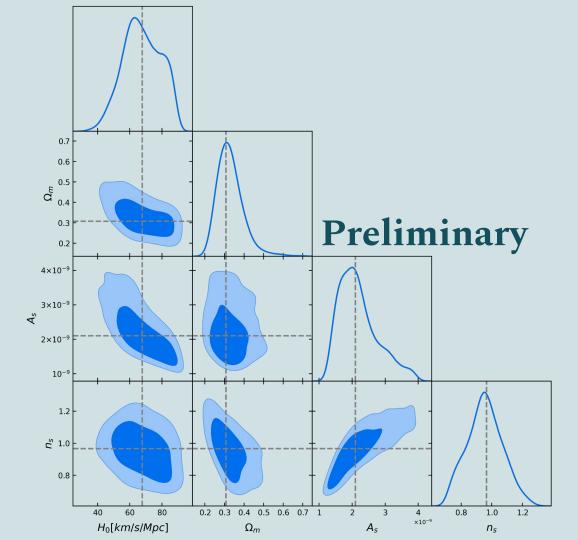
Likelihood

$$\ln \mathcal{L}(\Lambda) = \frac{1}{2} \sum \sum \sum \left(\tilde{C}_{\ell}^{ij} - C_{\ell}^{th,ij}(\Lambda) \right) \left[Cov_{\ell\ell'} \right]^{-1} \left(\tilde{C}_{\ell'}^{i'j'} - C_{\ell'}^{th,i'j'}(\Lambda) \right)$$

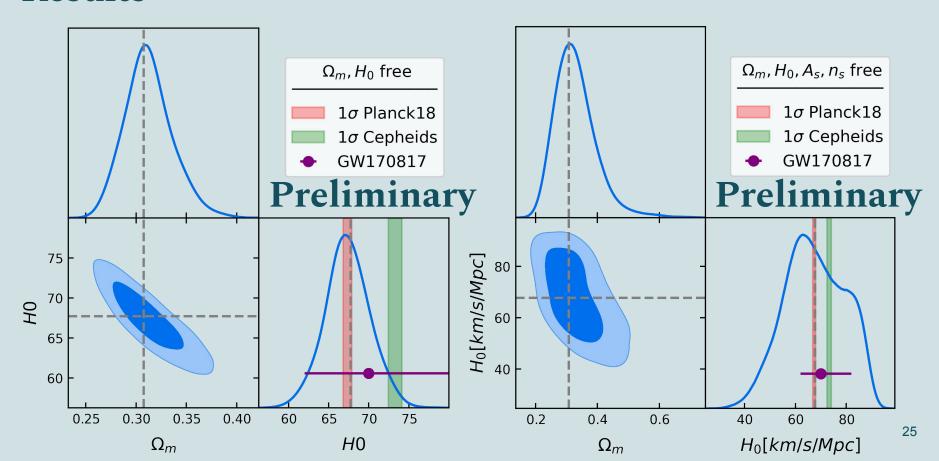
Results



Results



Results



Summary



Future Developments

- 1) Release public available likelihood to perform forecast with custom method selection, e.g.: tracer (HI, GW, other), observational setup (detector network and sensitivity);
- 2) Extend the analysis to astrophysical parameter estimation, by fixing the cosmological model;
- 3) Parametric and non-parametric cosmological analysis in Λ-CDM and extended Dark Energy models;
- 4) Explore alternative cosmological tracers, such as Lyman- α forest.

Thanks for the attention!