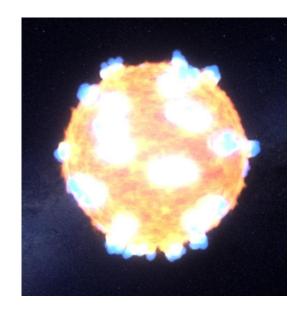


High Energy View of The Fast X-ray Transients Detected by Einstein Probe in its First Year

Supervisors: Dr. Biswajit Banerjee, Prof. Marica Branchesi, Dr. Stefano Ascenzi **External Supervisors**: Dr. Maria Edvige Ravasio, Prof. Peter Jonker (Radboud University)

AP Cycle
XXXIX



Bright ($L_{X,Peak} \sim 10^{44}$ - 10^{46} erg/s) and Short-lived X-ray bursts lasting from **seconds to hours**.

Possible Progenitors:

1. Supernova Shock Breakouts

Soderberg + (2008)



Bright ($L_{X,Peak} \sim 10^{44}$ - 10^{46} erg/s) and Short-lived X-ray bursts lasting from **seconds to hours**.

Possible Progenitors:

2. Gamma Ray Bursts

Xue + (2019); Lin + (2022)

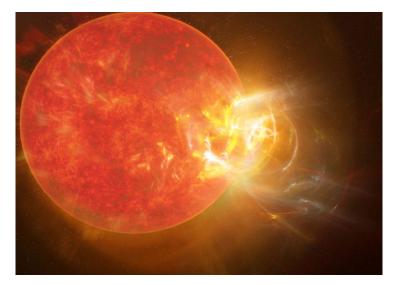
Bright ($L_{X,Peak} \sim 10^{44}$ - 10^{46} erg/s) and Short-lived X-ray bursts lasting from **seconds to hours**.

Possible Progenitors:

3. Tidal Disruption Events

Jonker + (2013)

Lower Luminosity $\sim 10^{39}$ - 10^{42} erg/s


Bright ($L_{X,Peak} \sim 10^{44}$ - 10^{46} -erg/s) and Short-lived X-ray bursts lasting from seconds to hours.

Possible Progenitors:

*Stellar Flares!

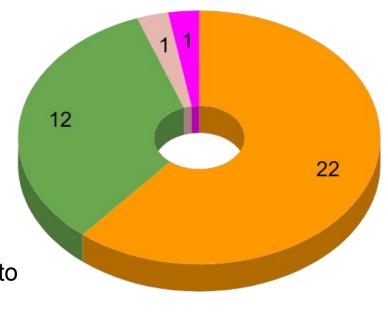
Cross-matched with existing stellar catalogues and discarded

"Extragalactic" Fast X-ray Transients

Credit: NSF/AUI/NSF NRAO/S. Dagnello

Historical FXTs

eROSITA


Swift

Only 36 seen in the Archival data in > 20 Years

Enters Einstein Probe!

EP detected **72 FXTs** from Feb 2024 to Feb 2025

Sample size x 2

Quirola-Vásquez + (2022, 2023) Alp & Larsson + (2020) Couch + (2011)

Einstein Probe

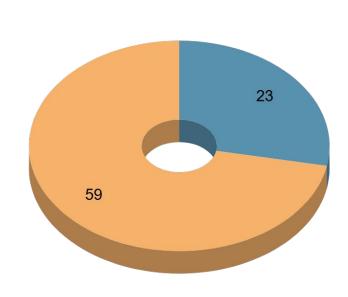
Monitors the sky in the soft X-ray band

Wide Field X-ray Telescope EP/WXT (0.5 - 4.0 keV)

- FoV ~ 3,600 sq. degrees
- F_{sensitive} ~ 2.6 x 10⁻¹¹ erg/s/cm² for 1000s Exposure
- Angular resolution of ~ 5 arcmin

Follow-up X-ray Telescope EP/FXT (0.3 - 10 keV)

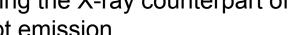
- Effective Area ~ 700 cm² @ 1 keV
- F_{sensitive} ~ 5 x 10⁻¹⁴ erg/s/cm² for 25 minute Exposure
- Angular resolution ~ 30 arcsec

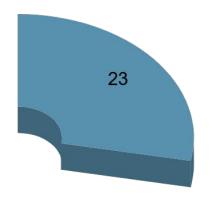

EP detected FXTs

EP detected 72 FXTs from Feb 2024 to Feb 2025

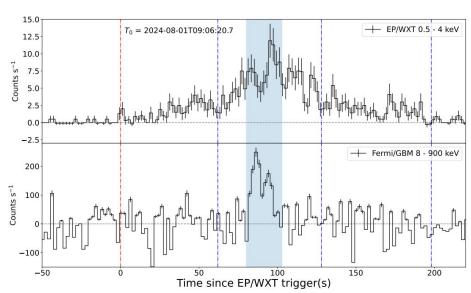
Sample size x 2

23 confirmed as GRBs


with MeV without MeV



EP detected FXTs

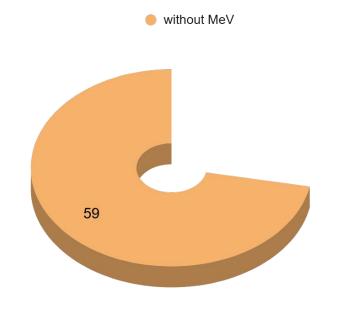

EP/WXT is seeing the X-ray counterpart of the GRB prompt emission

with MeV

EP240801a

$$\Delta T_{WXT} = 266 \text{ s}$$

 $\Delta T_{GBM} = 23 \text{ s}$



EP detected FXTs

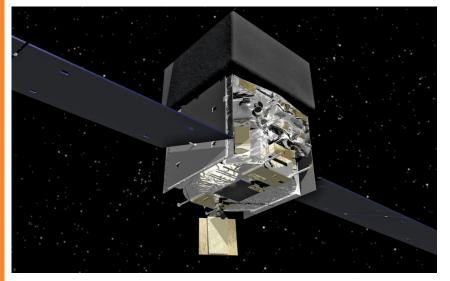
72% without any MeV counterpart

- Off-axis GRBs
- On-axis GRBs, but
 - With Low Luminosity
 - At High redshift

Or some different Astrophysical Phenomena!

XXXIX

EP FXTs as on-axis GRBs

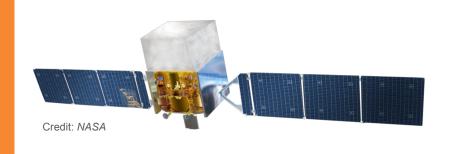


For High Redshift and/or Low Luminosity (low peak energy) events

Fermi/GBM

Fermi Gamma-ray Burst Monitor

- Primary GRB trigger instrument on Fermi.
- FoV ~ 8 sr (nearly full sky)
- Energy range 8 keV 40 MeV


Credit: NASA

Scintillator Detectors to measure photons 12 Nal detectors → 8 keV – 1 MeV 2 BGO detectors → 150 keV – 40 MeV

Fermi/LAT

Fermi Large Area Telescope

Anticoincidence
Detector (background rejection)

Conversion Foil

Particle Tracking
Detectors

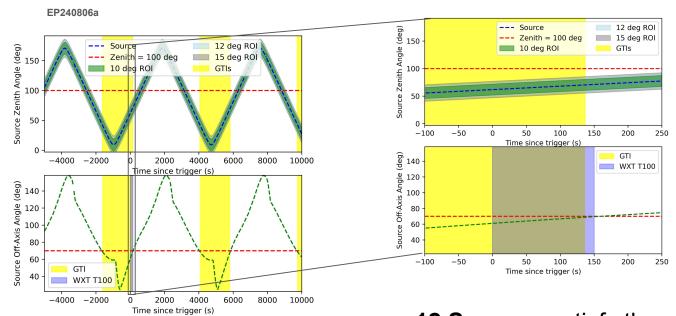
Calorimeter
(energy measurement)

Credit: NASA

Pair Conversion γ-ray Telescope

Covers ~ 20% of the sky at a time in 50 MeV to 300 GeV energy range

Scans the entire sky in 2 orbits (~ 3 hrs)


XXXIX

Source Selection

- $\Theta_{\text{zenith}} \le 100^{\circ}$ $\Theta_{\text{off-axis}} \le 70^{\circ}$

3. T(blue ∩ yellow)/T(blue) \geq 50% or LAT saw the source during WXT peak

Unbinned Likelihood

Likelihood Fit (unbinned) → fitting observed data to estimate the model parameters

No. of events
$$\mathcal{L}(m{ heta}) = \prod_{i=1}^N P(\mathbf{x}_i \mid m{ heta})$$
 Model parameters \Rightarrow $\log \mathcal{L}(m{ heta}) = \sum_{i=1}^N \log P(\mathbf{x}_i \mid m{ heta})$

Observed parameters of the ith photon

Test Statistic (TS) → compares the likelihood of the data under two hypothesis:

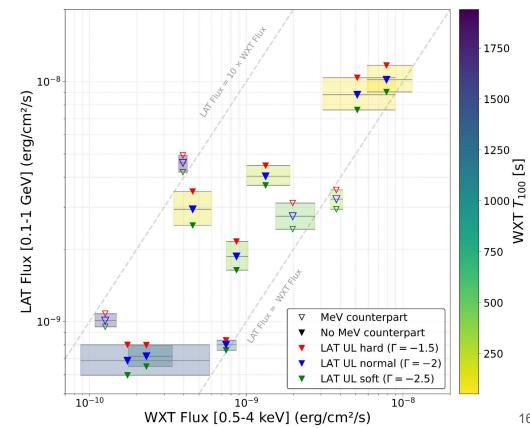
$$H_0$$
: Source is Absent $\rightarrow \ln \mathcal{L}(H_0)$

$$n \mathcal{L}(H_0)$$

$$\begin{array}{ll} \textbf{H}_0 : \textbf{Source is Absent} \rightarrow & \ln \mathcal{L}(H_0) \\ \textbf{H}_1 : \textbf{Source is present} \rightarrow & \ln \mathcal{L}(H_1) \end{array} \qquad TS = 2 \ln \frac{\mathcal{L}(H_1)}{\mathcal{L}(H_0)} \longrightarrow TS = 2 [\ln \mathcal{L}(H_1) - \ln \mathcal{L}(H_0)] \end{array}$$

A. Chopra

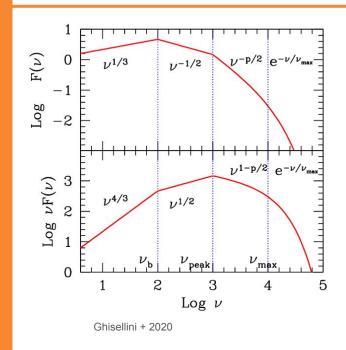
AP Cycle XXXIX

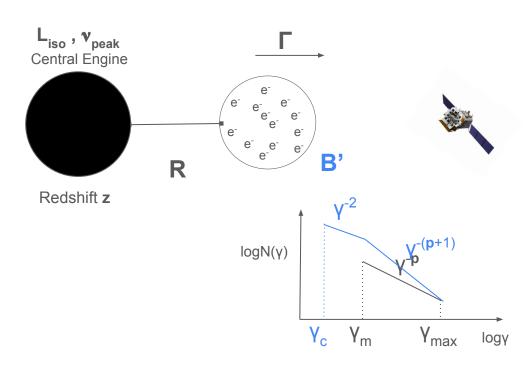

LAT Upper Limits

No Fermi-LAT detections during the T_{100} of EP/WXT \rightarrow (0 \leq TS \leq 3)

LAT ULs < 10 Flux_{WXT}

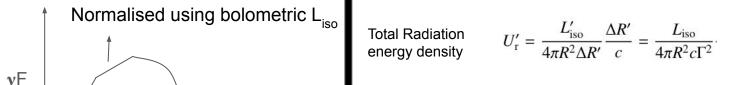
Even the ULs can help us constrain the physical parameters of the Jet like the Emission Radius R and the Magnetic Field in the comoving frame B'



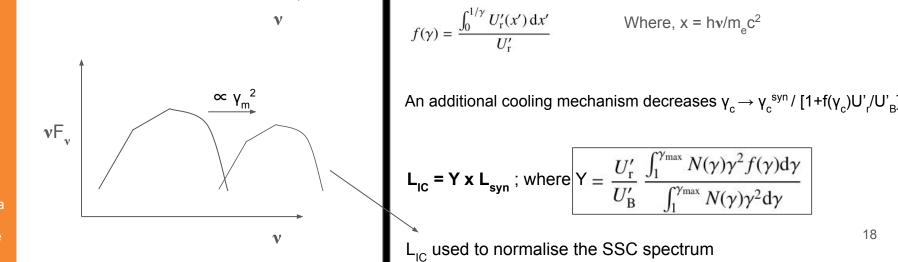

A. Chopra

AP Cycle XXXIX

Analytical Model



Analytical Model

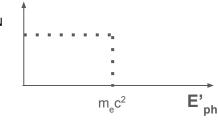


An electron with lorentz factor γ loses energy by scatter a fraction $f(\gamma)$ of U'_r in the Thomson regime

$$f(\gamma) = \frac{\int_0^{1/\gamma} U_{\rm r}'(x') \, \mathrm{d}x'}{U_{\rm r}'} \qquad \qquad \text{Where, } \mathbf{x} = \mathbf{h} \mathbf{v} / \mathbf{m}_{\rm e} \mathbf{c}^2$$

 $L_{IC} = Y \times L_{syn}$; where $Y = \frac{U_r'}{U_P'} \frac{\int_1^{\gamma_{max}} N(\gamma) \gamma^2 f(\gamma) d\gamma}{\int_1^{\gamma_{max}} N(\gamma) \gamma^2 d\gamma}$

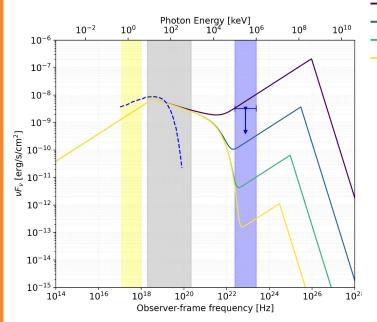
A. Chopra


AP Cycle **XXXIX**

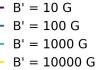
L_{IC} used to normalise the SSC spectrum

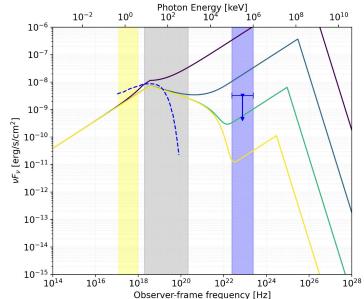
Caveats with the model

- 1. SSC doesn't affect the Synchrotron spectra → No Self-Consistent Solution.
- 2. Scattering only in Thomson regime \rightarrow Klein-Nishina cross section assumed to be $\sigma_{KN} = \sigma_{Th}$ for all the photon energies $E'_{ph} < m_e c^2$ and $\sigma_{KN} = 0$ otherwise.



Pair Production effect not accounted for → yy interaction can kill the SSC spectrum.


Case of EP240801a

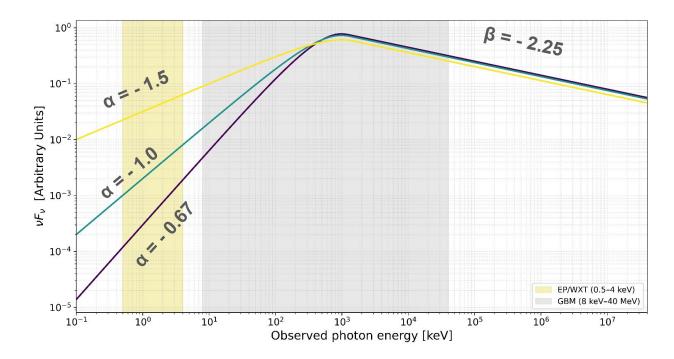


A Long GRB at z = 1.67 seen by EP/WXT with peak energy at 15 keV

EP/WXT Band (0.5-4 keV)
GBM Band (8-900 keV)
LAT Band (0.1-1 GeV)
EP240801a
LAT UL

R = 10^{15} cm, $L_{iso} = 2 \times 10^{51}$ erg/s

A. Chopra



 $R = 10^{16} \text{ cm}, L_{iso} = 2 \text{ x } 10^{51} \text{ erg/s}$

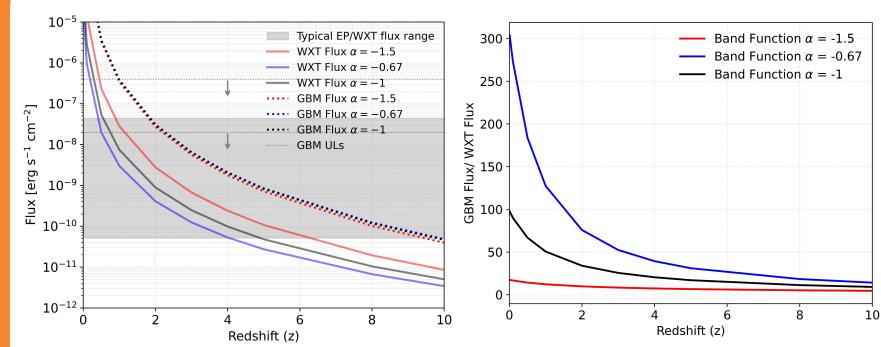
Band Function

I take the function which is used to fit most of the Prompt GRB spectra in the observer frame

XXXIX

Results from the Band Function

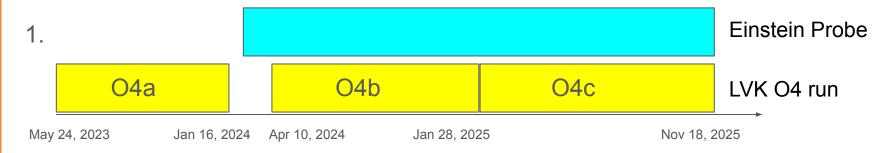
Low Luminosity GRB \rightarrow L_{iso} = 10⁴⁹ erg/s ; E_{p,z} = 10 keV


A. Chopra

AP Cycle XXXIX

Results from the Band Function

Typical GRB
$$\rightarrow$$
 L_{iso} = 10⁵² erg/s ; E_{p,z} = 200 keV



A. Chopra

AP Cycle XXXIX

Future Work

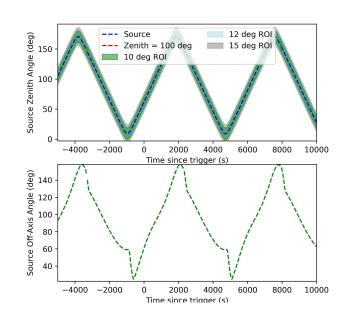
Using Offline GW Analysis Pipelines (eg. X-Pipeline) (Sutton+ 2010)

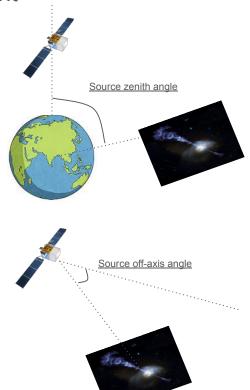
- Searching GW counterparts of the Einstein Probe Detected FXTs
- In case of Non-detection, calculate their Maximum Exclusion Distance

2. Study the Afterglow of the Fast X-ray Transients with Multi-wavelength data

CONCLUSION

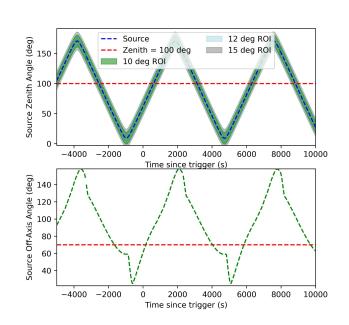
- Einstein Probe is detecting a large number of Fast X-ray transients with most of them not seen in the MeV band.
- For the on-axis GRB scenario, LAT upper limits show that the Synchrotron self-Compton emission is possibly suppressed, which discard low values of emission radius and local magnetic field.
- For low luminosity GRBs, EP can only see events with z<2.
- Afterglows of FXTs can help us understand their emission mechanism better.
- Performing X-Pipeline search to look for GW counterparts of the FXTs in future can help further constrain their nature.

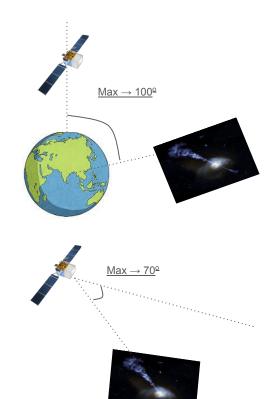

Extra Slides


Source Selection for Fermi/LAT

How well did Fermi/LAT cover the transient

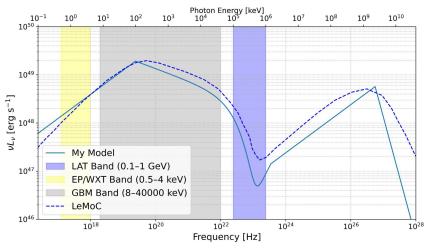
EP240806a \rightarrow **62.08°** \rightarrow **150s**

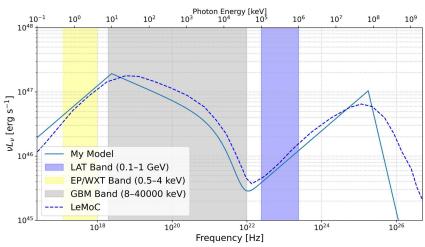




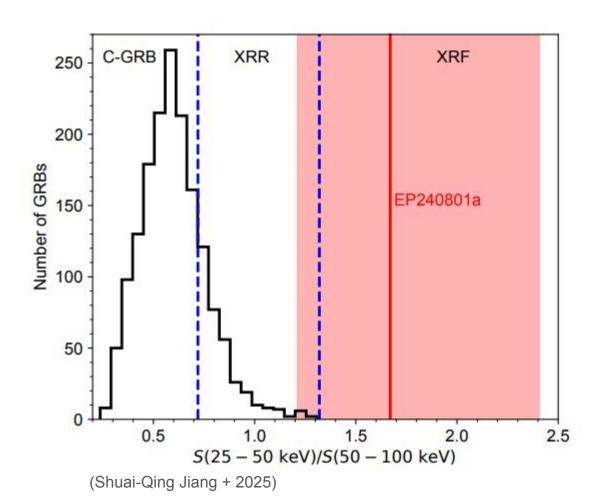
On-axis GRB scenario

Comparison between LeMoC and the Analytical Code




Numerical SSC code based on LeMoC (Leptonic Modeling Code) used for Blazars

Here the pair-production was not considered in the LeMoC code


$$\Gamma = 100$$
; B' = 10 G; $L_{iso} = 10^{50}$ erg/s; $E_{p,z} = 100$ keV; R= 10^{16} cm $\Gamma = 10$; B' = 10 G; $L_{iso} = 10^{48}$ erg/s; $E_{p,z} = 10$ keV; R= 10^{15} cm

$$\Gamma$$
 = 10; B' = 10 G; L_{iso} = 10⁴⁸ erg/s; E_{p,z} = 10 keV; R= 10¹⁵ cm

* The two models don't match when KN effects starts becoming prominent (for <u>lower B' and R</u>) and when <u>pair production</u> flag is turned-<u>on</u>

