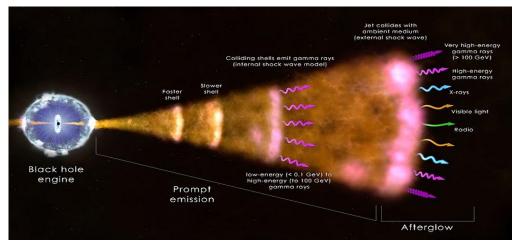
Multi-Wavelength View of Gamma-Ray Burst Afterglow

Pawan Tiwari


Supervisors
Dr. Biswajit Banerjee, Dr. Gor Oganesyan and
Prof. Marica Branchesi

Gamma-Ray Bursts

Credit: NASA/ICRAR.

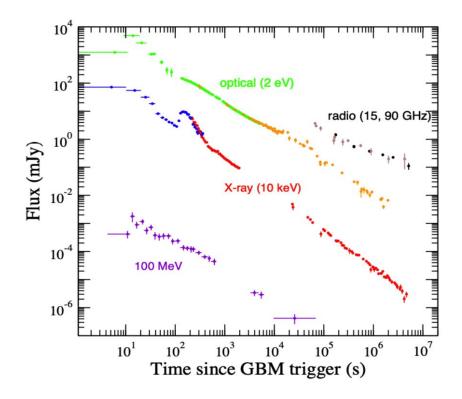
Photons ~ MeV

Variability: **0.01-1s**

Duration: **0.1 - 1000s**

 $E_{iso} - 10^{50} - 10^{54} erg$

Photons ~ Radio to VHE


Duration: Days to weeks

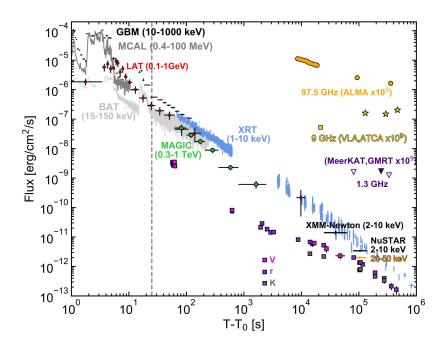
Smoothly PL lightcurve

Non-Thermal Spectra

Afterglow

GRB 130427A, Panaitescu et. al. 2013

Discovered Costa et al. 1997

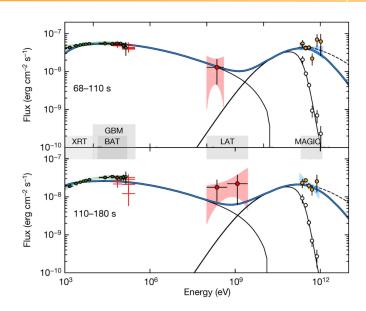

Predicted
Paczynksi & Rhodes 1993
Meszaros & Rees 1997

Dynamics
Blandford & Mckee 1976

Phenomenology Sari et al. 1998

Afterglows at VHE (>100 GeV)

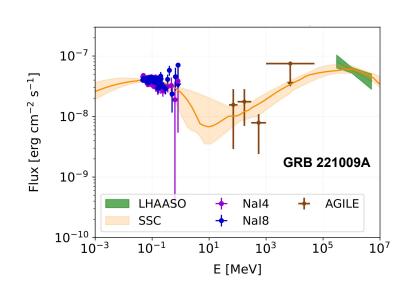
10-Optical (r-band) 10⁻⁹ 10-13 Time since GBM trigger (s)


GRB190114C, MAGIC collaboration, Nature 2019

GRB180720B, H.E.S.S. collaboration, Nature 2019

To date, only 5 GRBs have been conclusively detected in VHE!

keV vs. GeV vs. TeV



GRB190114C, MAGIC collaboration, Nature 2019

Banerjee et. al. 2024

X-ray Flux ~ TeV Flux GeV Flux Spectral Index and Flux Radiation Mechanism Synchrotron / SSC

Open Questions

- Dominant radiation process in afterglow.
- Microphysical parameter to explain afterglow shock physics.
- Are VHE GRBs unique?

Multi-wavelength study of GRB Afterglows

from 16 yrs. of combined operation of **Swift and Fermi Telescope** (2008-2024)

Fermi Gamma-Ray Space Telescope

> LAT: High Energy (30 MeV -300 GeV)

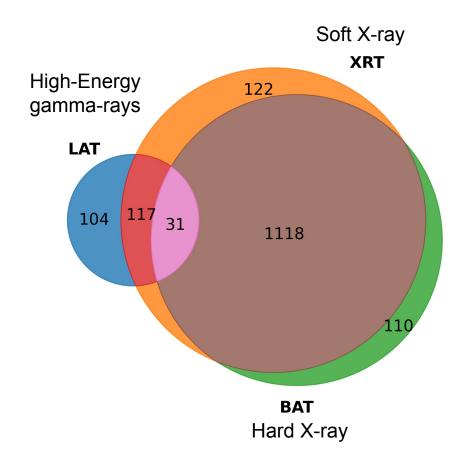
Radiation processes

Microphysical Parameters

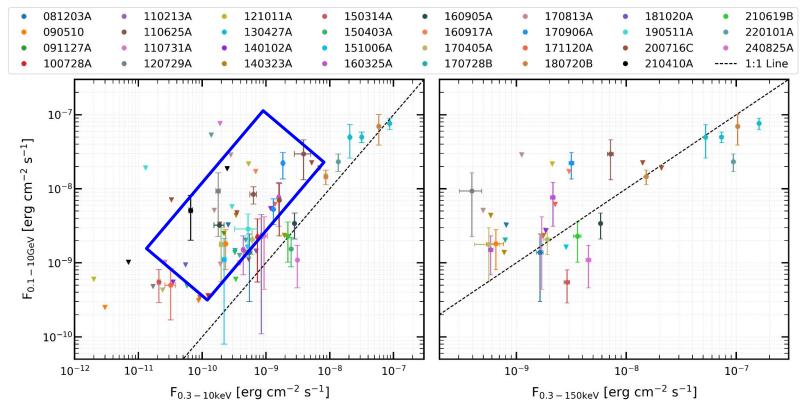
Circumburst medium

Neil Gehrels Swift Observatory

> XRT: Soft X-ray (0.3-10 keV) BAT: Hard X-ray (15 -150 keV)


VHE emission

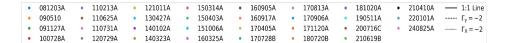
16 yrs. of Swift + Fermi (August 2008 - August 2024)

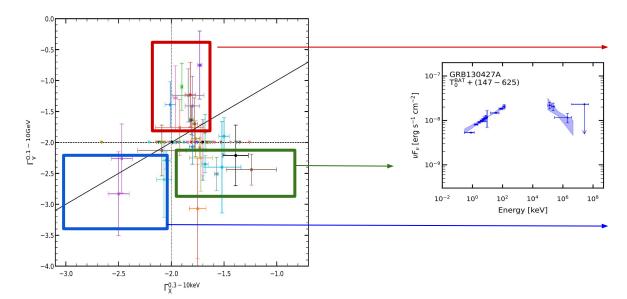

Afterglow + simultaneous observation

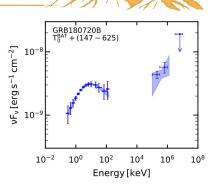
No. of GRB: 31
No. of time-bins: 74
Excluded flare

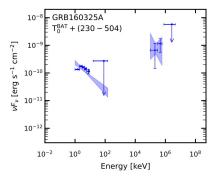
XRT + LAT: 74 XRT + BAT + LAT: 34

Flux vs Flux



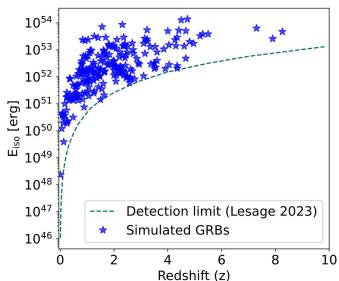



Flux Systematically higher in HE gamma-rays


Distributed around equality line

Spectral Index

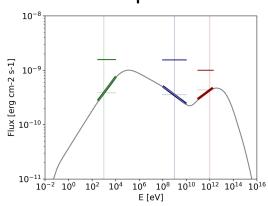
1. $\Gamma_X > -1.8$ (harder X-ray)


Afterglow Spectra get clustered in 3 segments:

2. - 2.0 < $\Gamma_{\rm x}$ < - 1.8 (moderately harder X-ray)

3.
$$\Gamma_{\rm x}$$
 < - 2.0 (softer X-ray)

Interpretation



Microphysics

$$\epsilon_{\rm e}$$
~ 0.1
 $\epsilon_{\rm B}$ ~ 10⁻⁴-10⁻²
p ~ 2.2, 2.3, 2.4

Example SED

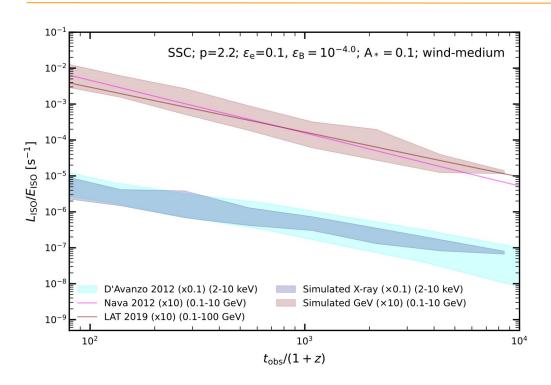
LeMoC, Stathopoulos et al. 2024

Medium: Wind/ Homogeneous

- Simulated sample of 220 random values of E_{ISO},
 z and observation time between 100–10ks that
 mimics the observation of one year of long
 GRBs.
- E_{ISO} and z are selected in distributions reported in *Ghirlanda & Salvaterra 2022* and GBM detection limit (*Lesage et al. 2023*)

 η : prompt efficiency ~ 0.1

 $\epsilon_{\rm e}$: fraction of energy to accelerate electron $\epsilon_{\rm B}$: fraction of energy to produce magnetic field p: slope of distribution of injected non -thermal electrons

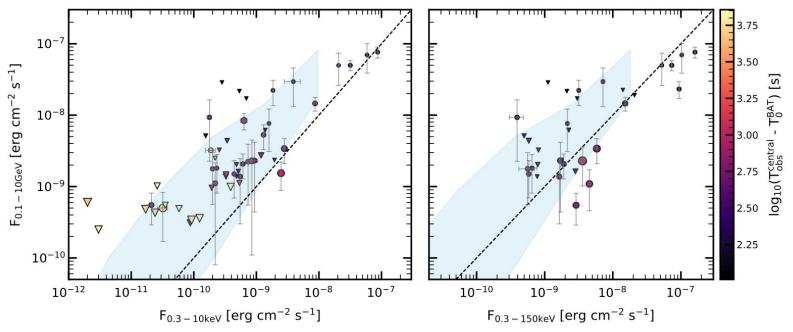

X-ray: $F_{0.3-10 \text{ keV}}$, $r_{0.3-10 \text{ keV}}$

GeV: $F_{0.1-10 \text{ GeV}}$, $r_{0.1-10}$

VHE: F_{0.3-1 TeV}, r_{0.3-1 TeV}

Prefered Parameters

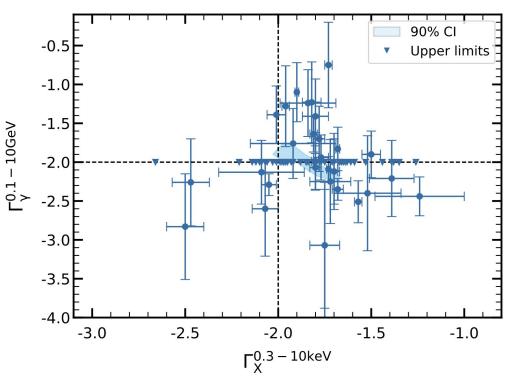
SSC in wind-medium with η =0.1, p=2.2, $\epsilon_{\rm e}$ ~ 0.1, $\epsilon_{\rm B}$ ~ 10⁻⁴


Can explain:

- 1. X-ray study noted in D'Avanzo 2012
- GeV noted in Nava 2014, LAT 2019

Inverse compton, lower density wind medium, $\epsilon_{\rm B}$ ~10⁻⁴

Predicted Flux with Observed Flux

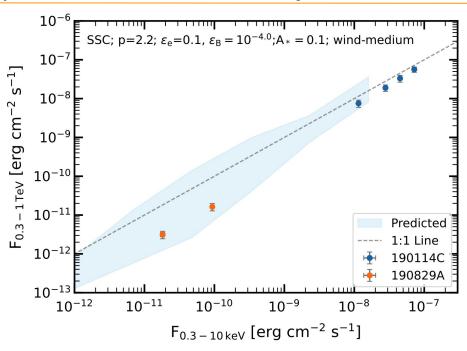


Blue shaded region is predicted emission with given parameters.

SSC in wind-medium with η =0.1, p=2.2, $\epsilon_{\rm e}^{}$ ~ 0.1, $\epsilon_{\rm B}^{}$ ~10^-4

Predicted vs Observed Spectral Index

SSC in wind-medium with η =0.1, p=2.2, $\epsilon_{\rm e}$ ~ 0.1, $\epsilon_{\rm B}$ ~10⁻⁴


Open Questions

- Dominant radiation process in afterglow.
- Microphysical parameter to explain afterglow shock physics.
- Are VHE GRBs unique?

VHE (intrinsic) Prediction vs. X-ray

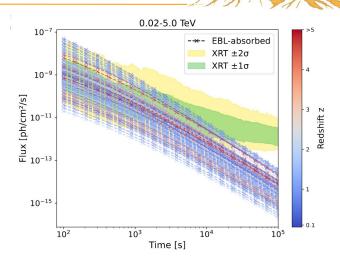
Correlation between $F_{0.3-10 \text{ keV}}$ vs. $F_{0.3-1 \text{ TeV}}$ (intrinsic) can be noted with best setup parameter

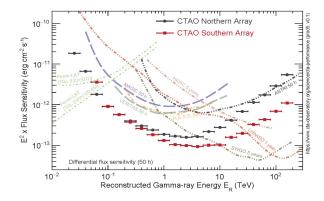
SSC in wind-medium with η =0.1, p=2.2, $\epsilon_{\rm o}$ ~ 0.1, $\epsilon_{\rm R}$ ~ 10⁻⁴

^{**}The predicted VHE flux was computed assuming a bulk Γ < 300 and avoiding prompt contamination; therefore, it does not account for 16 GRB 190114C (Γ > 500; MAGIC Collaboration 2019b).

We learn!

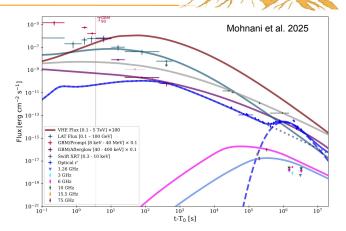
- ➤ Inverse Compton losses are essential to explain joint X-ray & HE gamma-ray observations.
- Evidence favors a wind-like circumburst medium for long GRBs with typical microphysical parameters:
 - Electron spectral index p = 2.2
 - Energy fractions $\epsilon_e = 0.1$, $\epsilon_B = 1 \times 10^{-4}$
- Intrinsic Very High Energy (VHE) flux correlates well with X-ray, consistent with previous TeV GRB observations.
- > Study can play important role in designing observation strategy for detecting VHE photons for GRBs with current and future Cherenkov Telescope.

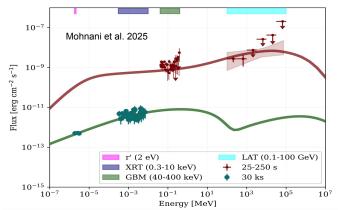

https://arxiv.org/abs/2510.05239


P. Tiwari, B. Banerjee, D. Miceli, G. Oganesyan, A. Ierardi, S. Macera, M. Branchesi, L. Nava, S. Mohnani, S. Agarwal, A. Shukla

Follow up work: Observing Strategy for IACTs

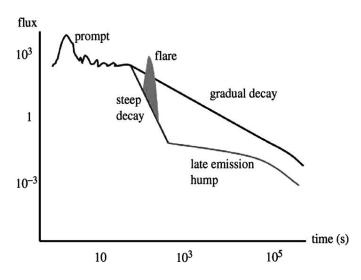
- Known: VHE prediction with X-ray emission for afterglow.
- Mock Catalog of GBM (E_{ISO}, broad loc.) +XRT (precise loc.) of 220 GRBs with redshift.
- Use of this information is to optimize (exposure time) the detectability of early VHE emission from GRBs using Cherenkov telescopes.
- ➤ VHE light curve with Fermi/GBM and Swift/XRT localization.
- Next steps: Study detectability with IACTs and tiling strategies


Macera et al. (including P. Tiwari in prep)

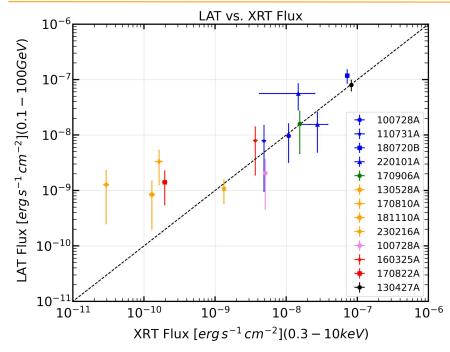


Contribution in other projects: GRB230812B

- One of the **Brightest** GRBs detected by Fermi/GBM + **72 GeV** photon in Fermi/LAT during the early afterglow phase.
- the study focuses on multiwavelength spectral and temporal in the keV-VHE domain
- Suggest SSC with wind medium in afterglow.
- The detection of **rare MeV afterglow** using alternate background estimation technique.
- Demonstrated detection with IACT to recover emission from poorly localized GRBs.



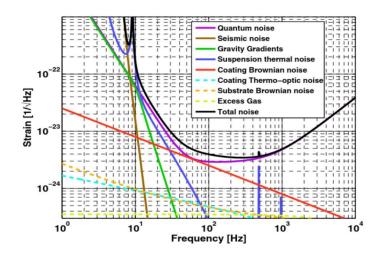
X-ray Flares


- Origin Unknown
- Possibly related to late-time central engine activity or different velocity ejecta.
- Targeted Search for Swift detected GRBs with Flares from 2008 2023 performed
- Independent of Fermi/GBM detection, Fermi-LAT upper limit is calculated.
- Performed spectral study for X-ray (0.3-10 keV) and HE gamma rays (0.1-10 GeV).

GRBs Light Curve based on Swift-XRT data

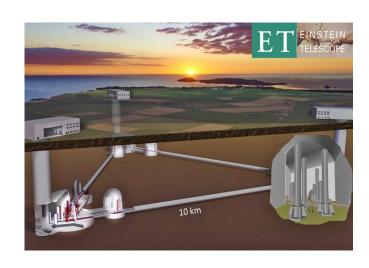
Preliminary Results - Xray Flares

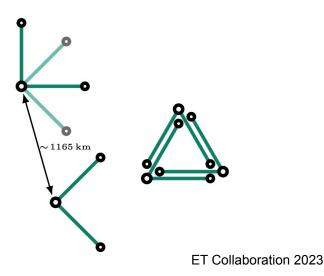
Future work:


- Inclusion of hard X-ray and UV data observed by Swift-BAT and UVOT resp.
- ➤ Interpretation of Results to explain multiwavelength dataset.

Contribution in other projects: LIGO- VIRGO- KAGRA

- Rapid Response Team Shifts.
- Offline GW Signal Searches connected to GRBs with XPipeline and pyGRB for O4a run.





Contributing in other projects: Einstein Telescope (ET)

- Scientific performance of ET for different technical requirements, focusing on the compact binary coalescences (CBCs) merger science case with gwfish.
- Planned to contribute in writing part of ET Science paper.

Summary for year 2025

- From X-rays to High-Energy Gamma-rays: A Comprehensive Multi-Wavelength Study of Early Gamma-Ray Burst Afterglows (https://arxiv.org/abs/2510.05239)

- > Follow up studies:
 - X-ray Flares.
 - Observational strategy for detecting TeV photons (Macera et al. in prep)
- Contributed in other projects:
 - o GRB230812B (Mohnani et al. 2025)
 - o rTDE (Oganesyan et al. 2025)
 - GRB prompt emission spectra at high energies (Macera et al. 2025)
- Multimessenger Studies
 - With LVK and ET

Thank you for your attention!!

Summary 2025

Publications

From X-rays to High-Energy Gamma-rays: A Comprehensive Multi-Wavelength Study of Early Gamma-Ray Burst Afterglows. (Tiwari et al. 2025)

Pawan Tiwari, Biswajit Banerjee, Davide Miceli, Gor Oganesyan, Annarita Ierardi, Samantha Macera, Marica Branchesi, Lara Nava, Shraddha Mohnani, Sushmita Agarwal and Amit Shukla

> Transient MeV radiation from a relativistic tidal disruption candidate. (Oganesyan et al. 2025)

Gor Oganesyan, Elias Kammoun, Annarita Ierardi, Alessio Ludovico De Santis, Biswajit Banerjee, Emanuele Sobacchi, Felix Aharonian, Samanta Macera, **Pawan Tiwari**, Alessio Mei, Shraddha Mohnani, Stefano Ascenzi, Samuele Ronchini, Marica Branchesi

➤ Broadband Modelling of GRB 230812B Afterglow: Implications for VHE -ray Detection with IACTs. (Mohnani et al. 2025)

Shraddha Mohnani, Biswajit Banerjee, Davide Miceli, Lara Nava, Gor Oganesyan, **Pawan Tiwari**, Annarita Ierardi, Alessio L. De Santis, Samanta Macera, Amit Shukla, Marica Branchesi, Swarna Chatterjee, Sushmita Agarwal, Abhirup Datta, Kuldeep Kumar Yadav, G.C. Anupama

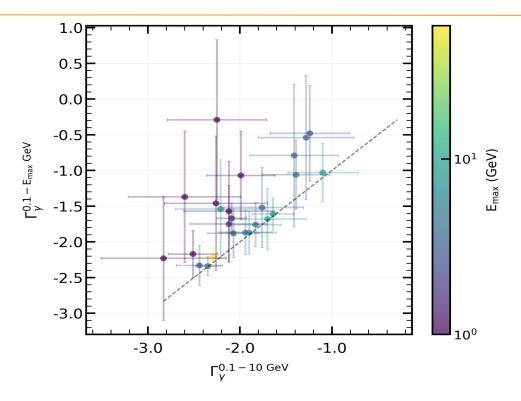
Gamma-ray burst prompt emission spectra at high energies. A&A 700, A88 (2025)

Samanta Macera, Biswajit Banerjee, Alessio Mei, **Pawan Tiwari**, Gor Oganesyan, Marica Branchesi.

Gigaelectronvolt emission from a compact binary merger. Nature 612, 236–239 (2022).

Alessio Mei, Biswajit Banerjee, Gor Oganesyan, Om Sharan Salafia, Stefano Giarratana, Marica Branchesi, Paolo D'Avanzo, Sergio Campana, Giancarlo Ghirlanda, Samuele Ronchini, Amit Shukla, **Pawan Tiwari**.

Talks, Conferences, School and Workshop


- ➤ Talks:
 - a. 4th Astro-COLIBRI Multimessenger Astrophysics Workshop, Paris, France October 2025
 - b. 14th Young Researcher Meeting, L'Aquila, Italy September 2025
 - c. 39th International Cosmic Ray Conference, Geneva, Switzerland July 2025
 - d. 2nd VHE-GAM Meeting, Bari, Italy May 2025
 - e. Challenges and Future Perspectives in GW Astronomy: O4 and Beyond Workshop, Leiden, Netherlands October 2024
- > Posters:
 - a. 8th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy, Milan, Italy September 2024
 - b. EAS Annual Meeting, Padova, Italy July 2024
- Conferences, School and workshop
 - a. 3rd Nanjing GRB Conference, Suzhou, China May 2024
 - b. First Collaboration Meeting on Multi-Messenger Astronomy, Indore, India January 2024
 - c. IV Gravi-Gamma-Nu Workshop, L'Aquila, Italy October 2023
 - d. PRECISE Summer School, Institute of Physics, Warsaw, Poland July 2023
 - e. Summer School on the Transient Universe, IESC Cargese, France June 2023

Extra!

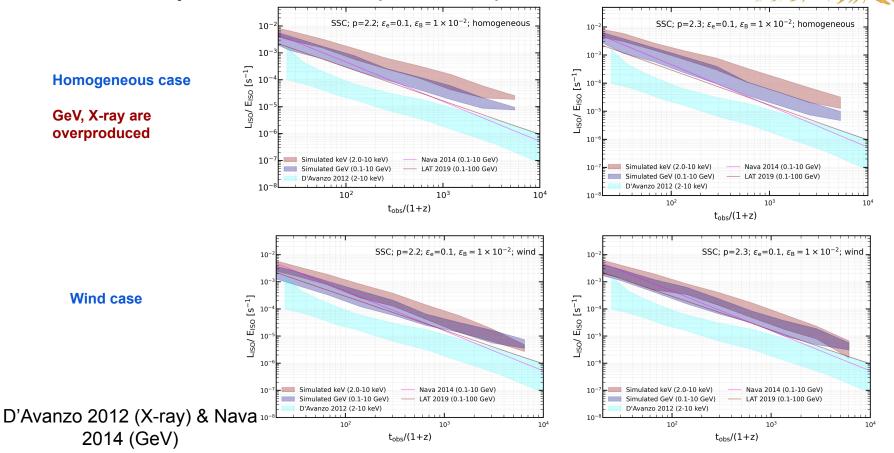
LAT Index Comparison

For 0.1-10 GeV: Uncertainties in photon indices due to inclusion of photons greater than highest energy photon (E_{max})

Previous Study shows:

D'Avanzo 2012 (X-ray) & Nava 2014 (GeV)

$$\eta \sim 0.1$$


$$\epsilon_{\rm B}^{\sim} 10^{-2}$$

p
$$\sim$$
 2.2 and 2.3

Circumburst medium: Wind/ Homogenous 🦻

GeV and X-ray Previous studies parameter prediction

Preferred parameters				KS test: p-values		
p	$\epsilon_{ m B}$	medium	density (n/A _*)	$ar{p}_{\gamma}$	\bar{p}_{x}	Combined
2.2	10^{-4}	wind	0.1	0.84	0.94	0.97
2.3	10^{-4}	wind	0.1	0.74	0.91	0.94
2.4	10^{-4}	wind	0.1	0.62	0.89	0.88
2.2	10^{-3}	wind	0.1	0.37	0.83	0.67
2.4	10^{-3}	wind	0.1	0.28	0.93	0.61
2.3	10^{-3}	wind	0.1	0.24	0.88	0.54
2.2	10^{-2}	wind	1.0	0.18	0.29	0.21
2.3	10^{-2}	wind	1.0	0.13	0.32	0.16
2.2	10^{-2}	homogeneous	1.0	0.03	0.12	0.02
2.3	10^{-2}	homogeneous	1.0	0.02	0.18	0.02

Table B.1. Kolmogorov–Smirnov (KS) test results for the preferred parameters in both wind and homogeneous (ISM) environments, assuming $\epsilon_e = 0.1$ and $\eta = 0.1$. \bar{p}_x and \bar{p}_y represent the probability of agreement between 220 simulated GRBs and the clustering in X-rays and GeV energies, respectively. The last column report the joint probability.