

Sapphire fibre growth

Peak stress (MPa)	Round 1	Round 2	Round 3
Stock	366	-	-
Fibre 1	> 460	> 710	> 634
Fibre 2	> 543	> 625	> 792
Fibre 3	> 109	-	-

Table 5.1: The results of the strength testing

- Laser heated pedestal growth method used to produce sapphire fibres
- 1 mm in diameter, 350 mm long
- Peak strength of 792 MPa (unbroken)
- Good surface quality and diameter tolerance (±5% fibre diameter)

Sapphire welding

- 425 µm 1.6 mm diameter samples welded
- Ability to repair/reweld repeatedly
- Highest maximum stress observed: **1.4 GPa (unbroken)**
- Laser polished samples significantly stronger than ground and mechanically polished samples
- No welds were broken

Laser polish Max: 1418 MPa

Sapphire Thermal Conductivity & Mechanical Loss

- Measured down to 13 K for six resonant modes
- Ringdowns measured at ~5 K intervals
- Using welded 425 µm fibre to 1 mm rod
- Infer $h\phi_s$ of 1.3×10^{-11} (cannot decouple surface and weld)

M.M Reid, PhD thesis, University of Glasgow. Aug 2024, <u>https://theses.gla.ac.uk/41177/</u> Mariela Masso Reid et al 2023 Class. Quantum Grav. 40 245006

