Suspensions & Fibres (XGCD ET_CE Meeting)

Iryna Buchovska (IKZ Berlin), Giles Hammond (University of Glasgow), Flavio Travasso (Università degli Studi di Camerino)

iryna.buchovska@ikz-berlin.de

giles.hammond@glasgow.ac.uk

flavio.travasso@unicam.it

1

Introduction

- Silica suspensions
 - Brief overview of LIGO/VIRGO fused silica
 - Thermal noise estimates/Violin modes
 - 1g-320kg suspension R&D (modelling and prototyping)
- Sapphire/Silicon suspensions
 - Sapphire growth
 - Silicon growth
 - Thermo-mechanical properties for cryogenic operation

Fused Silica

59

Brief Overview of LIGO/VIRGO Experience

- Monolithic suspensions & signal recycling pioneered in GEO-600 \rightarrow upscaled to aLIGO and AdvVirgo
- Fused silica is a mature technology >2 decades of experience

GEO/GEO-HF: 1996-2004

LIGO/VIRGO: 2004-present

Fibre Pulling & Welding (aLGO/AdvVIRGO)

Glasgow

Hanford

Urbino

- CO2 fibre pulling machines (Glasgow, Urbino, VIRGO, LHO, RRCAT: 2025)
- Strong fibres (4GPa)
- Low mechanical loss
- Good dimensional tolerance (±5% fibre diameter)
- Stabilisation of melt temperature via camera feedback

Glasgow thin fibre puller

15µm fibre

Fibre Pulling & Welding (aLGO/AdvVIRGO)

- CO2 fibre welding
- Strong welds
- Can re-weld and re-work (silica has high viscosity at melt)
 - destress fibres to remove any angle in stock
 - heat weld at reduced power to lower thermal stress

University of Glasgow kikz KEBNIZ-INSTITUTEOR

7

Modelling Thermal Noise

• Use the following loss terms to model the weld region and silica fibres

Modelling Thermal Noise

• Use the following loss terms to model the weld region and silica fibres

Thermal Noise/Violin Mode Modelling

- Q's of up to 1 billion in fully monolithic suspension
- Evidence that total surface/weld loss has reduced over 10 years of suspension builds (improved technique and thermal management in the weld)

https://agenda.infn.it/event/26121/contributions/136512/ https://theses.gla.ac.uk/8984/ A V Cumming et al 2020 Class. Quantum Grav. 37 195019

Fused Silica Suspension R&D

1g 100g Speedmeter Speedmeter/AEI 10m

5.6kg GEO600

40kg VIRGO/LIGO

160kg Suspensions

- Glasgow prototype suspension, 160 kg, 1.2 GPa, 1.2 m
 - Proof of concept of key aspects (O5+, AdV+ relevant)
 - Welding larger diameter stock
 - Longer fibres
 - Higher stress fibres
- ET performance demonstrated, as well as heading on the pathway for CE

Phys. Rev. Applied 17, 024044 – Published 16 February 2022

University of Glasgow krstalzüchtung

160kg Suspensions

https://dcc.cosmicexplorer.org/CE-T2000017/public https://www.et-gw.eu/index.php/etsensitivities

- FEA has been further advanced for 160kg suspensions, and models have studied:
 - Fibre bending points
 - Fibre/ear stress distributions
 - Fibre/system energy distributions
 → thermal noise performance

CE Note

- Scaling mass (160kg \rightarrow 320kg) and length (1.2m \rightarrow 2m) will give x1.8 improvement
- Using thicker stock (5mm → 6mm) should provide further improvement (FEA underway)

How Much Stress

- Studies underway in UK/Italy to study stresscorrosion in fused silica glass
- Lab hangs have proven the capability to use fibres of higher stresses, with typical candidate options of 1.2 GPa, or 1.6 GPa
- For 1.6 GPa failure times are projected ~30 years in air
- **** Recent result ****
- 4.5 GPa fibre in air breaks \approx 16 s (10 s/22 s)
- 4.5 GPa fibre offloaded in vacuum, still hanging after 66 days
- Improvement of 4x10⁵ (well known that reducing humidity improves strength)
- Campaign of further measurements underway (explore stress corrosion plot in vacuum for 4 - 8 GPa range, to get reasonable breaking times)

Proctor et al., 1967, The strength of fused silica, Proc. R. Soc. Lond., A297534, 557, http://doi.org/10.1098/rspa.1967.0085

Failure time of fused silica fibres at specific detector stress values

Figure 4.16: Predicted in-air lifetime of fused silica fibres at relevant detector stress values.

Future R&D

- Fused silica R&D is mature
- Strong fibres (in vacuum even stronger!!), high Q factor violin modes
- Groups in UK/Italy are well placed to deliver technology for ET-HF (160kg hang already demonstrated)
- A# and AdV+ are on the path to 320kg CE
- 320kg hang planned 2025/26

Techniques to weld thicker stock

Develop engineering prototypes, study techniques to align and move large optics

Develop ear/anchor design

Large masses for Virgo-O5

Larger mirrors (diameter 55cm, thickness 20cm => weight 104kg) were foreseen for Virgo-O5 (*project at moment delayed*)

For AdVirgo was used a maximum localized stress around **2Mpa** (*a very conservative value with a safety factor around 6*) and we would like to maintain almost the same stress on ear => same ratio between the weight of the mirror and the surface of the glued part:

- AdV
 - M_{AdV}=42 kg
 - Area_{SB_AdV} = 12.47 cm² X 2 (about 1.5X9 cm per ear)
 - Shear Stress: M_{AdV} g/ S_{AdV} =0.165 Mpa
- LM
 - M_{LM}=104 kg
 - Shear Stress: M_{LM} g/S_{LM}=0.165 MPa
 - Area_{SB_LM} = Area_{SB_AdV} * M_{LM}/ M_{AdV} => \Rightarrow Area_{SB_LM} ~ 35 cm²

Bigger ear – Stress study

Bigger ear – Shear stress Bigger ear – Normal stress K: Susp LM 5 K: Susp LM 5 ANSYS ANSYS Maximum Shear Stress 2 Normal Stress R19.1 R19.1 Type: Maximum Shear Stress Type: Normal Stress(X Axis) Unit: Pa Unit: Pa Academic Academic Time: 1 **Global Coordinate System** 24/01/2020 15:37 Time: 1 24/01/2020 15:37 3.8068e6 Max 7.9092e6 Max 3.3856e6 1.3542e6 2.9644e6 2.3185e5 2.5431e6 39697 2.1219e6 6796.6 1.7007e6 -2597.4 1.2795e6 8.5831e5 -12516 -60306 4.371e5 -2.9058e5 15896 Min -1.4002e6 Min

VIR-1034A-20

Ears for the Larger Masses

A new design was realized with a better distribution of the stress and without exceeding the safety value of 2-3 MPa

Ear total surface: 90mm X 33 mm= 30 cm²

Aletta: Height 10mm, thickness 3mm

New ear – Stress study

Without the thin wall, the normal stress is more than the breaking strength in the lower part: the "Aletta" has exactly the rule to reduce the stress on the lower edge and to produce a better re-distribution

New design – Normal stress

University of Glasgow

New design – Shear stress

K: Susp LM 7 K: Susp LM 7 ANSYS Maximum Shear Stress Normal Stress Type: Maximum Shear Stress R19.1 Type: Normal Stress(X Axis) R19.1 Unit: Pa Unit: Pa Academic Time: 1 Academic Global Coordinate System 17/12/2019 11:08 Time: 1 17/12/2019 11:10 1.4357e6 Max 1.0596e6 Max 1.2772e6 1.1186e6 2.2682e5 9.6005e5 48553 8.015e5 10393 6.4294e5 2224.8 4.8439e5 -3883.9 3.2583e5 -20283 1.6728e5 -1.0592e -5.5314e 8725.8 -2.8886e6 Min

New ear - TN evaluation

Roughness	Bonding Thickness(nm)	Anchors Thermal (m/Hz ^{1/2})	Ears Thermal (m/Hz ^{1/2})	CTN (m/Hz ^{1/2})	CTN/TotalBonding
λ/10	60	2.067 10-22	3.85 10-22	4.616 10-21	10.6
λ/8	100	2.314 10-22	3.85 10-22	4.616 10-21	10.3
λ/6	75	2.648 10-22	3.85 10-22	4.616 10-21	9.9
λ/4	150	3.213 10-22	3.85 10-22	4.616 10-21	9.2
λ/2	300	4.478 10 ⁻²²	3.85 10-22	4.616 10-21	7.8
5λ/6	500	5.665 10-22	3.85 10-22	4.616 10-21	6.7
5λ/3	1000	7.757 10-22	3.85 10-22	4.616 10-21	5.3

LM - Tools

•. The box (125 kg) is used in LMA as HCB jig and for transporting the mirror to Virgo, it embeds the bottom part of the cage (Ti)

• A trolley, is used to handle the orientation during HCB and deployment into the payload

- •. The rails to insert the box
- •. Once positioned into the cage (FARO arm), the mirror is accurately lifted up

VIR-0877A-22 - LIGO-G2201574-v1

Full size Dummy Susp.

- 2 months suspended (both mario and mirror) in air (short marionette wire)
- 2 months suspended in vacuum
- Equipped with OpLevs

VIR-0877A-22 - LIGO-G2201574-v1