

The MACRO experiment and its legacy

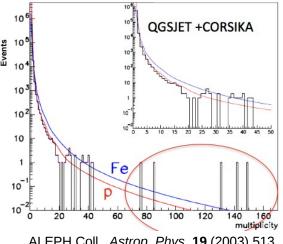
Multimuon events from cosmic rays with the ALICE detector

Mario Sitta for the ALICE Collaboration

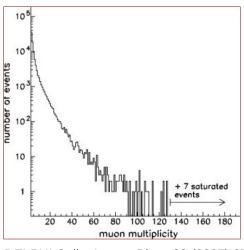
Università del Piemonte Orientale & INFN Torino

Alessandria

Italy

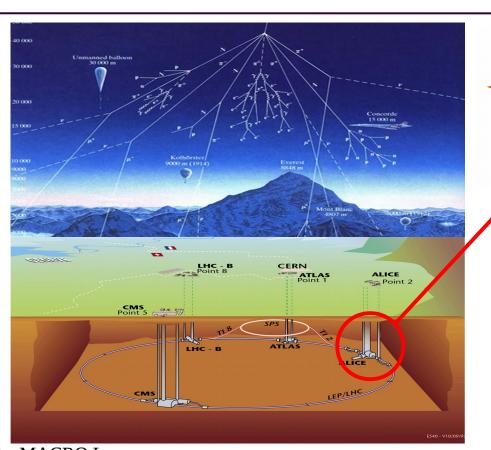

Outline

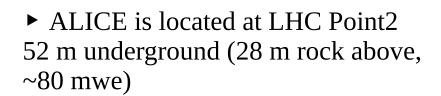
- Motivations
- Detecting atmospheric muons with the ALICE experiment
- The Muon Multiplicity Distribution (MMD)
- The High Muon Multiplicity (HMM) events
- Monte Carlo and data comparison
- Conclusions


Motivations

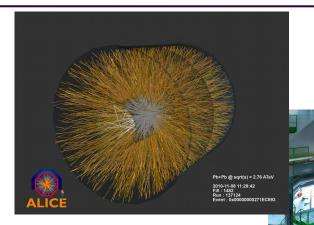
- Use of collider detectors for cosmic-ray studies was pioneered by LEP experiments ALEPH, DELPHI and L3
- All LEP results were consistent with standard hadronic interaction. models except for the observation of high multiplicity muon bundles
 - even under the assumption of highest measured flux and pure iron spectrum

ALEPH: ~320 mwe, ~70 GeV threshold DELPHI: ~286 mwe, ~52 GeV threshold

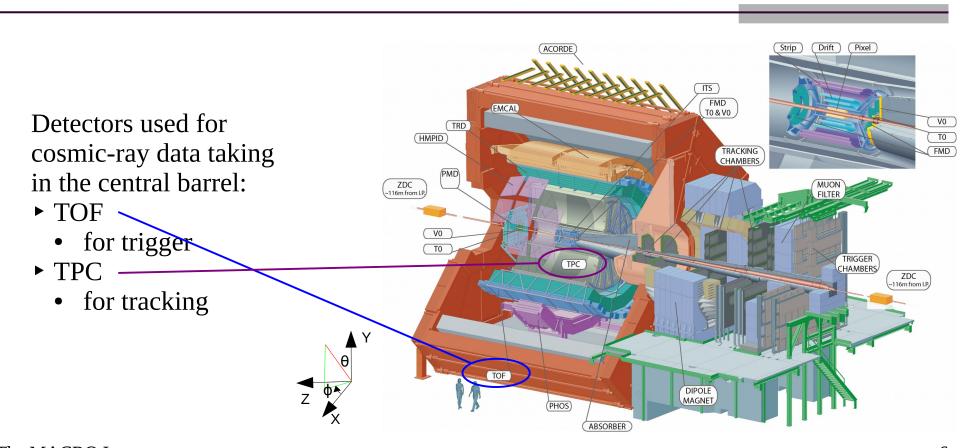


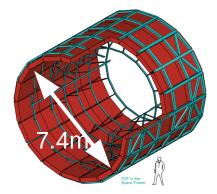

ALEPH Coll., Astrop. Phys. 19 (2003) 513

DELPHI Coll., Astrop. Phys. 28 (2007) 273

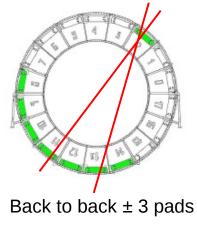

Detection of cosmic muons at LHC

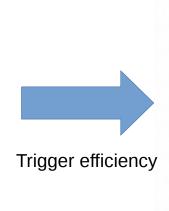
► Muon energy threshold ~16 GeV

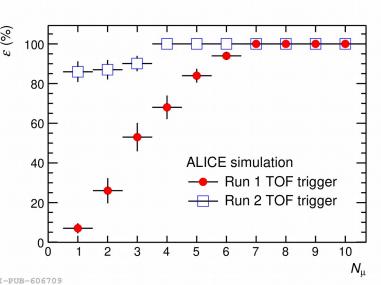

The ALICE Experiment


ALICE is mainly devoted to the study of strongly interacting matter in *pp*, *p*A and AA collisions at ultra-relativistic energies

The ALICE detectors

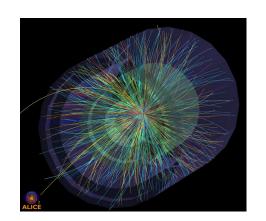

Time-Of-Flight (TOF)



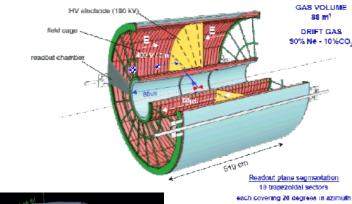

TOF

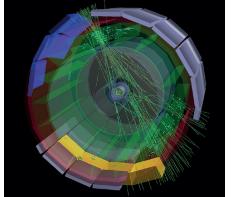
Array of 1638 MRPC pads (18 ϕ sectors with 5 modules each) around TPC

Full φ coverage, $45^{\circ} < \theta < 135^{\circ}$, time resolution 100ps

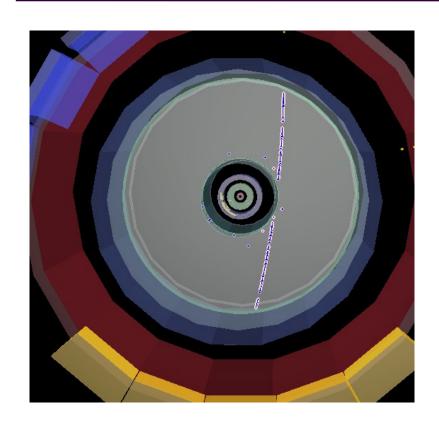

Time Projection Chamber (TPC)

TPC


Main tracking device with excellent capabilities for high-track density, 557k readout channels


Momentum resolution \sim 1% for p_t < 2 GeV/c \sim 20% for $p_{.} = 100 \text{ GeV/c}$ in HI collisions

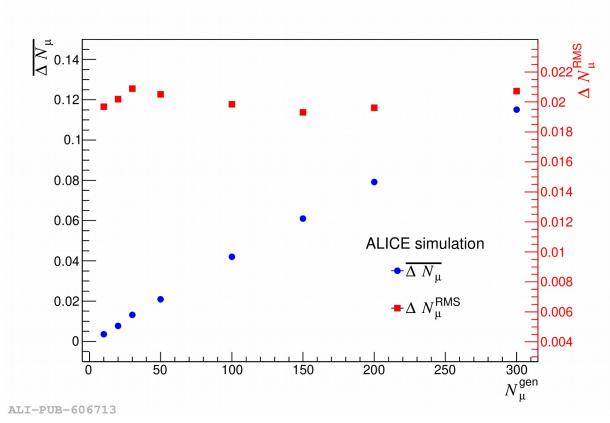
dE/dx resolution < 10%



ALICE TPC LAYOUT

Atmospheric muon reconstruction

- The TPC reconstructs a single muon as two tracks (up and down)
- A specific algorithm was worked out to match the two tracks as a single one
- Monte Carlo events and data of high multiplicity have been used to optimize the parameters of the matching algorithm

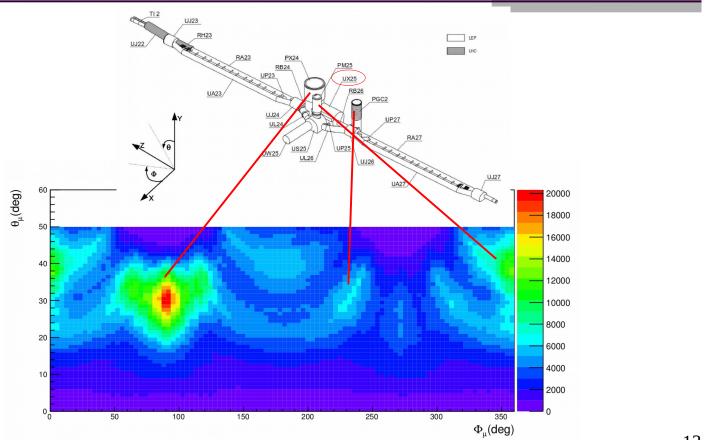

Analysis cuts

- To accept a track
 - \ge 50 space points in the TPC (out of a maximum of 159)
 - p > 0.5 GeV/c
 - if multi-muon, parallelism cut $cos(\Delta \Psi) > 0.990$
- To match an up track with a down track
 - \mathbf{d}_{xz} < 6 cm in the mid horizontal TPC plane
- Matched muon: up and down tracks matched
- \blacksquare Single-track muon: a track satisfying all cuts but distance d_{xz}
- Cut efficiency checked with MC simulation

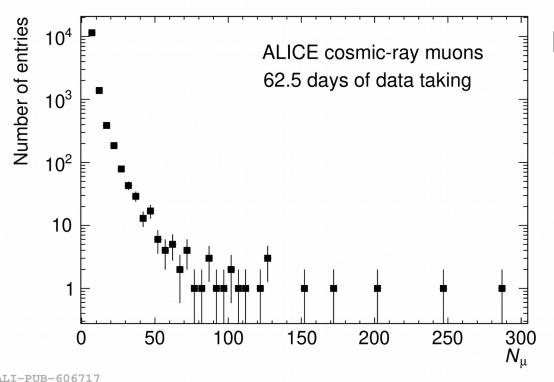
Efficiency in multiplicity measurement

- Generate 8 samples 1000 events each with N_{μ} from 10 to 300 (all parallel)
- Reconstruct with same algorithm as real data
- Study mean and RMS of

$$\Delta N_{\mu} = \frac{N_{\mu}^{gen} - N_{\mu}^{rec}}{N_{\mu}^{gen}}$$



Data sample for cosmic-ray studies


- Data taken during Run2 (2015 2018) during no-beam periods
 - with TOF trigger
 - with full magnetic field (0.5 T)
- Integrated live time: 62.5 days
 - > 165 million events with at least 1 reconstructed muon in TPC
 - 15702 multimuon $(N_{\mu} > 4)$ events
 - 13570 multimuon events with zenith angle θ < 50° kept for further analyses

Single muon angular distribution

Muon tomography of surrounding environment

Muon Multiplicity Distribution (MMD)

- \blacksquare 15702 events with $N_{\mu} > 4$
 - comparison of muon distribution with MC simulation for $4 < N_{\mu} < 50$
 - rate measurement and comparison with MC for High Muon Multiplicity Events (HMME) $N_{\mu} > 100$

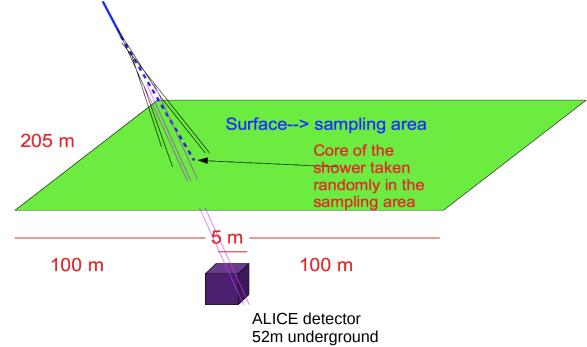
Monte Carlo simulation

For MMD studies:

- $\blacksquare 10^{14} < E_p < 10^{18} \text{ eV}$
- pure proton (light composition)
- pure Iron (heavy composition)

■ For HHME studies:

- $\blacksquare 10^{16} < E_p < 10^{18} \text{ eV}$
- pure proton (light composition)
- pure Iron (heavy composition)

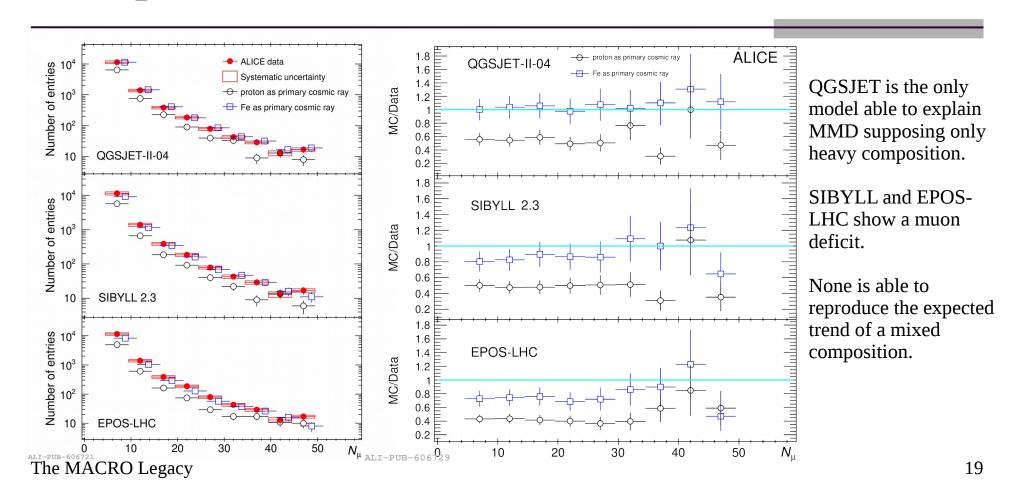

- All-particle flux at 1 TeV: (0.225 ± 0.005) (m² s sr TeV)⁻¹
 - from J. R. Hörandel, *Astrop*.*Phys.* **19** (2003) 193-220
- Usual power law energy spectrum $dN/dE = K E^{-\gamma}$ with
 - $\gamma = 2.70 \pm 0.03$ below the knee (3·10¹⁵ eV)
 - \sim $\gamma = 3.00 \pm 0.03$ above the knee

Monte Carlo simulation

- Simulated events equivalent to 62.5 days live time were generated
 - using CORSIKA as event generator from primary interaction to surface
- Three different hadronic interaction models were used
 - QGSJET-II-04 with CORSIKA 7.74
 - EPOS-LHC with CORSIKA 7.56
 - SYBILL 2.3d with CORSIKA 7.74
- The ALICE experimental hall, the surrounding environment and all the detectors are accurately described
 - using GEANT3 for particle propagation

Monte Carlo simulation

■ The core of each shower was scattered at surface level with a flat random distribution in an area of 205x205 m² centered around the ALICE apparatus


The MACRO Legacy 52m underground 17

Systematic uncertainties

Data							
$N_{\rm cl}^{\rm TPC}$	Distance d_{xz}	Momentum <i>p</i>	cos(ΔΨ)	Total			
4%	9%	1%	2%	10%			

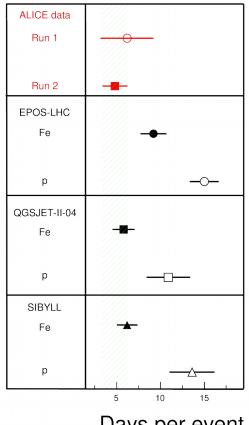
MC simulations							
Model	Element	γ	γ_{k}	Rock	Flux	Live time	Total
QGSJET-II-04	р	9%	6%	7%	4%	1%	14%
	Fe	8%	6%	5%	3%	1%	12%
SIBYLL 2.3d	р	8%	6%	8%	1%	1%	13%
SIDTLL 2.3u	Fe	9%	6%	6%	2%	1%	13%
EPOS-LHC	р	8%	4%	6%	2%	0%	11%
	Fe	9%	6%	6%	2%	1%	12%

Comparison Data-MonteCarlo for MMD

Rate of HMME

- In 62.5 days 13 HMM ($N_u > 100$) events were recorded
 - corresponding to a rate of $(2.4 \pm 0.7) \cdot 10^{-6}$ Hz
 - i.e. 1 HMM event every (4.8 ± 1.4) days
 - 28% statistical uncertainty, 10% systematic uncertainty

Monte Carlo study of HMM events


- To estimate the rate of these events
 - a simulation corresponding to 365 days of live time was performed
 - to reduce statistical uncertainties
 - with both p and Fe as primary nuclei
 - for each interaction model (QGSJET, SIBYLL, EPOS-LHC)
 - the counting of HMME in 365 days was repeated 5 times with the same generated sample by randomly assigning the core of each shower in the aforementioned surface area
- Five estimations of the HMME rate
 - the mean value is the computed rate, the standard deviation is the estimated statistical uncertainty

HMME rate: comparison data-MC

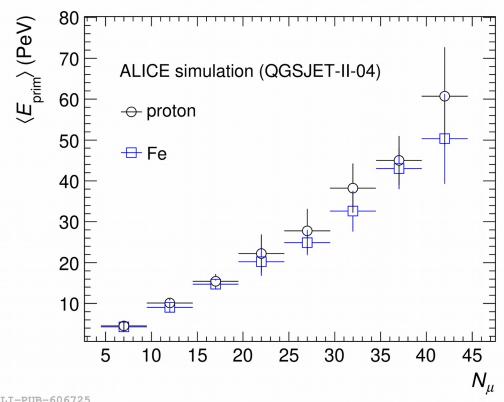
	Data		CORSIKA 7.7400		CORSIKA 7.5600 CORSIKA 7.7400			
HMM events			QGSJET-II-04		EPOS-LHC		SIBYLL 2.3d	
	Run 2	Run 1(*)	р	Fe	р	Fe	р	Fe
Period [days per event]	4.8	6.2	10.9	5.8	15.0	9.2	13.6	6.2
Rate [x10 ⁻⁶ Hz]	2.4	1.9	1.1	2.0	0.8	1.3	0.9	1.9
Statistical uncertainty	28%	45%	4%	5%	10%	10%	10%	8%
Total uncert. (syst+stat)	30%	49%	23%	22%	11%	16%	19%	19%

 $^{^{(*)}}$ For Run 1 (2010–2013): 30.8 days live time, 22.6M muon events, 7487 with $N_u > 4$

HMME rate: comparison data-MC

Days per event

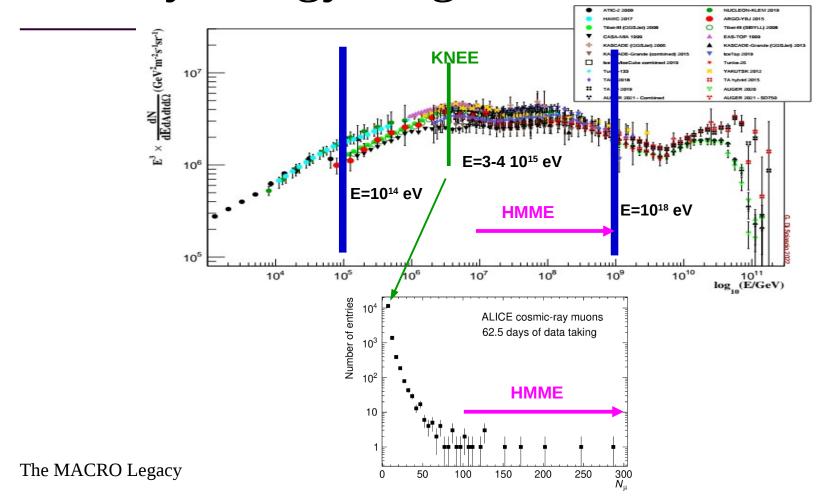
Conclusions


- Analysis of whole Run2 (2015-2018) ALICE cosmics data (62.5 days live time)
- MMD ($4 < N_{\mu} < 50$) compared with MC with 3 hadronic interaction models
 - only QGSJET-II-04 is able to explain the MMD assuming a pure Fe primary composition SIBYLL 2.3d and even more EPOS-LHC show a muon deficit
 - anyway none of the three is able to reproduce the expected trend from a mixed primary composition

Conclusions

- The rate of HMME (N_{μ} > 100) from MC simulation with QGSJET and a heavy primary composition is the closest to the rate measured from real data
 - confirming the results obtained with Run1 data
 - also SYBILL outcome is compatible with real data, while EPOS-LHC gives a definitely lower rate
- An improvement of the hadronic interaction models based on latest LHC results is necessary for a better understanding of cosmic ray data

BACKUP


Primary Energy vs Muon Multiplicity

The MACRO Legacy

ALI-PUB-606725

Primary energy range in Monte Carlo

