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1. PRELIMINARIES

1.1 BRIEF SUMMARY ON MEASURES

Definition 1.1 (σ-algebra). Given a set X , we denote its power set1 by P (X) and Σ ⊆P (X) is

called a σ-algebra if

• X ∈ Σ;

• given A ∈ Σ, then X∖A ∈ Σ;

• given {An}n∈N ⊂ X, then
⋃
n∈N

An ∈ Σ.

Remark 1.1. From the definition of a σ-algebra we also have

• ∅ ∈ Σ;

• given {An}n∈N ⊂ X, then by De Morgan’s law X∖
⋃
n∈N

(X∖An) =
⋂
n∈N

An ∈ Σ.

The smallest possible σ-algebra on X is {X, ∅}, while the largest is P (X).

Definition 1.2 (Borel σ-algebra). Given (X, τ) a topological space, the Borel σ-algebra of X ,

denoted by B(X), is the smallest σ-algebra containing the topology (i.e. the open sets)

B(X) =
⋂

F (X) σ-algebra on X :
F (X)⊇ τ

F (X).

Definition 1.3 (Measure). Given a set X and a σ-algebra Σ on it, a map µ : Σ−→ [0, +∞] is said

a (unsigned) measure if

• ∃ E ∈ Σ : µ(E) < +∞;

• given {En}n∈N ⊂ Σ pairwise disjoint, one has

µ(E) =
∑
n∈N

µ(En), with E =
⋃
n∈N

En ∈ Σ. ←− σ-additivity

(X,Σ, µ) is said a measure space and the elements of Σ are called measurable sets.

In case Σ = B(X), µ is said a Borel measure.

A measure space is said complete if for anyN ∈ Σ s.t. µ(N) = 0 one has {E ⊂X | E ⊂ N} ⊂ Σ.

In case µ(X) = 1, µ is called a probability measure and (X,Σ, µ) a probability space.

Remark 1.2. From the definition of measure we deduce

1The power set of a set is the set of all its subsets, including itself and ∅.
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Foundations of Quantum Mechanics

• µ(∅) = 0;

• E1, E2 ∈ Σ with E1 ⊆ E2 implies µ(E1) ≤ µ(E2) ←− monotonicity

• given E1, E2 ∈ Σ one has µ(E1∩ E2) + µ(E1∪ E2) = µ(E1) + µ(E2);

• given {En}n∈N, {Fn}n∈N ⊂ Σ with En ⊆ En+1 and Fn ⊇ Fn+1, one has

µ
( ⋃
n∈N

En

)
= lim

n→∞
µ(En), µ

( ⋂
n∈N

Fn

)
= lim

n→∞
µ(Fn).

Definition 1.4. Given a measure space (X,Σ, µ), the measure µ is said

• finite, if µ(X) < +∞;

• σ-finite, if X can be covered with at most countably many sets in Σ with finite measure;

• if X is a Hausdorff topological space2, µ is said locally finite, if for any p ∈X there exists

G ∈ Σ open such that p ∈ G and µ(G) < +∞.

Definition 1.5 (Regular Measure). Given the measure space (X,B(X), µ), the Borel measure µ

is said inner regular (or tight3) if

µ(E) = sup
K⊆E

{
µ(K)

∣∣ K∈Σ and K compact
}
, ∀E ∈ Σ.

It is outer regular if

µ(E) = inf
G⊇E

{
µ(G)

∣∣ G∈Σ and G open
}
, ∀E ∈ Σ.

The measure µ is regular if it is both inner and outer regular.

Definition 1.6 (Radon Measure). Let (X,B(X), µ) be a measure space with X Hausdorff topo-

logical space. The Borel measure µ is said Radon if it is locally finite and tight.

Proposition 1.1. Let X be a proper metric space (i.e. any finite closed ball is compact) and µ a

σ-finite Borel measure on B(X). Then, µ is regular.

Definition 1.7. Given a set X with a σ-algebra Σ ⊆P (X) on it, we provide two distinct measures

µ, ν : Σ−→ [0, +∞].

• µ and ν are (mutually) singular (µ⊥ ν), if there exists N ∈ Σ s.t. µ(N) = ν(X∖N) = 0;

• ν is absolutely continuous with respect to µ (ν ≪ µ), if µ(A) = 0 implies ν(A) = 0.

Proposition 1.2. Suppose µ and ν are tight Borel measures. Then, ν ≪ µ if and only if µ(N) = 0

implies ν(N) = 0 for every compact set N .

2Namely, given two distinct points in the space, they have two respective neighbourhoods which are disjoint.
3Some authors distinguish the inner regularity from tightness by requiring measurable sets to be arbitrary close

(in measure) to some closed set (inner regularity) or compact set (tightness).
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Definition 1.8 (Measurability). Given a measure space (X,ΣX , µ) and a topological space Y, a

function f : X−→Y is said µ-measurable if for any A ∈ B(Y ) one has

f−1(A) := {x ∈X | f(x) ∈ A} ∈ ΣX .

In case ΣX = B(X), a µ-measurable function f is called a Borel function.

Definition 1.9 (Continuous function). A function f : X −→ Y between X and Y topological

spaces is said continuous at x ∈ X if for any open set G ⊂ Y such that f(x)∈ G one has f−1(G)

is a open set in X .

Remark 1.3. A continuous function (i.e. continuous at every point) is also a Borel function, but

not the converse. Consider for instance the Dirichlet function (which assigns 1 to rational numbers

and 0 to irrational numbers). For any open G ⊆ R one has

f−1(G) =



∅, if {0, 1} ∩G = ∅;

Q, if 1 ∈ G ∧ 0 /∈ G;

R∖Q if 0 ∈ G ∧ 1 /∈ G;

R if {0, 1} ⊂ G.

In all cases, the preimage is a Borel set (Q is a countable union of points, i.e. closed sets). Hence

we exhibited a non-continuous Borel function.

Definition 1.10 (Support). Given X topological space and the measure space (X,B(X), µ), con-

sider a µ-measurable function f :X−→C. One defines its (essential) support as the closed set

supp f := X∖
⋃

G∈Nf

G, Nf :=
{
G ⊆ X

∣∣ G open, f = 0 µ – a.e.4 in G
}
.

Proposition 1.3. Let (X,ΣX , µ) be a measure space and Y, Z two topological spaces. Suppose

f : X−→Y is a µ-measurable function and g : Y −→Z a Borel function. Then, g ◦ f : X−→Z

is µ-measurable as well.

Remark 1.4. In particular, a continuous function composed with a measurable function f is

measurable, e.g. |f |, whereas the composition of Borel functions is again a Borel function.

Proposition 1.4. Sums and products of two complex-valued measurable functions are measurable.

Proposition 1.5. Suppose fn : X−→R ∪ {±∞} is a sequence of measurable functions5. Then

inf
n∈N

fn(x), sup
n∈N

fn(x), lim inf
n∈N

fn(x), lim sup
n∈N

fn(x)

are measurable as well.

4A property holds µ – a.e. (almost everywhere) if it is valid for all points in X ∖N with µ(N) = 0.
5The standard topology of R ∪ {±∞} is generated by the base {[−∞, a), (a, b), (b,+∞] | a, b ∈ R}.
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Remark 1.5. This last result implies that if f and g are measurable, so are max(f, g),min(f, g).

Definition 1.11 (Simple Functions). In a measure space (X,Σ, µ), we say that a measurable func-

tion6 s : X−→C is simple if its image is finite, namely if there exist a set of disjoint measurable

sets {Ak}nk=1⊂Σ and values {αk}nk=1⊂C for some n∈N such that

s(x) =
n∑
k=1

αk1Ak(x), ∀x ∈ X =⇒ s(X) = {αk}nk=1, s−1({p}) =

Ak, if p= αk;

∅, otherwise.

Definition 1.12 (Lebesgue Integral - Simple functions). Given a measure space (X,Σ, µ) and a

non-negative simple function s : X−→ [0, +∞] we define7 for all A ∈ Σ∫
A

dµ(x) s(x) :=
n∑
k=1

αk µ(Ak∩ A), if s : x 7−→
n∑
k=1

αk1Ak(x).

Proposition 1.6. The integral for non-negative simple functions fulfils

i)
∫
A

dµ(x) s(x) =

∫
X

dµ(x) 1A(x)s(x), A ∈ Σ;

ii)
∫

⋃
n∈N

An

dµ(x) s(x) =
∑
n∈N

∫
An

dµ(x) s(x), {An}n∈N ⊂ Σ;

iii)
∫
A

dµ(x)
[
αs1(x)+βs2(x)

]
= α

∫
A

dµ(x) s1(x)+β

∫
A

dµ(x) s2(x), α, β ≥ 0, A ∈ Σ;

iv) A,B ∈ Σ : A ⊆ B =⇒
∫
A

dµ(x) s(x) ≤
∫
B

dµ(x) s(x);

v) s1 ≤ s2 =⇒
∫
A

dµ(x) s1(x) ≤
∫
A

dµ(x) s2(x), A ∈ Σ.

Definition 1.13 (Lebesgue Integral - Non-negative Measurable functions). Given a measure space

(X,Σ, µ) and a non-negative measurable function f : X−→ [0, +∞] we define∫
A

dµ(x) f(x) := sup
s simple functions :

0≤ s≤ f

∫
A

dµ(x) s(x), A ∈ Σ.

Theorem 1.7 (Beppo-Levi, Monotone convergence). Let fn : X −→ [0, +∞) be a monotone

non-decreasing sequence of non-negative measurable functions such that fn −−−→
n→∞

f pointwise.

Then,

lim
n→∞

∫
A

dµ(x) fn(x) =

∫
A

dµ(x) f(x), ∀A ∈ Σ.

Corollary 1.8. For any non-negative measurable function f there always exists a monotone non-

decreasing sequence of non-negative simple functions sn : X −→ [0, +∞) such that sn −−−→
n→∞

f

pointwise. Additionally, proposition 1.6 holds also for non-negative measurable functions.

6The characteristic function 1A is µ-measurable iff A ∈ Σ.
7Here we adopt the convention 0 · (+∞) = 0.
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Definition 1.14 (Lebesgue Integral). For any real-valued measurable function f : X−→R, s.t.∫
X

dµ(x) max{f(x), 0} < +∞, and
∫
X

dµ(x) max{−f(x), 0} < +∞,

one can define for any A ∈ Σ∫
A

dµ(x) f(x) :=

∫
A

dµ(x) max{f(x), 0} −
∫
A

dµ(x) max{−f(x), 0}.

Similarly, in case f is complex-valued one can consider separately the integration of the real and

the imaginary part of f . We say f is integrable in case
∫
X
dµ(x) |f(x)| < +∞.

Proposition 1.9. Apart from point iv), proposition 1.6 holds also for integrable functions.

Additionally, given f, g : X−→C integrable one has for all A ∈ Σ∣∣∣∣∫
A

dµ(x) f(x)

∣∣∣∣ ≤ ∫
A

dµ(x) |f(x)|.

Proposition 1.10. Let f : X−→C be measurable. Then∫
X

dµ(x) |f(x)| = 0 ⇐⇒ f(x) = 0 µ – a.e.

Moreover, in case f is either non-negative or integrable

µ(A) = 0 =⇒
∫
A

dµ(x) f(x) = 0.

Remark 1.6. Notice that the integral does not change if we add to the domain of integration a

set of zero measure or if we modify the value of the integrand along a set of zero measure. In

particular, two functions equal a.e. have the same integral.

Theorem 1.11 (Generalized Fatou’s lemma). If fn : X −→R is a sequence of real-valued meas-

urable functions and g : X−→R some integrable function, then for all A ∈ Σ∫
A

dµ(x) lim inf
n→∞

fn(x) ≤ lim inf
n→∞

∫
A

dµ(x) fn(x), if fn ≥ g;

lim sup
n→∞

∫
A

dµ(x) fn(x) ≤
∫
A

dµ(x) lim sup
n→∞

fn(x), if fn ≤ g.

Theorem 1.12 (Fatou-Lebesgue, Uniform Dominated Convergence). Let fn : X −→ C be a se-

quence of complex-valued measurable functions such that fn −−−→
n→∞

f pointwise for some meas-

urable f : X−→C. Then, if there exists g : X−→C integrable such that |fn| ≤ g, one has for all

A ∈ Σ

lim
n→∞

∫
A

dµ(x) |fn(x)− f(x)| = 0, hence lim
n→∞

∫
A

dµ(x) fn(x) =

∫
A

dµ(x) f(x).
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Theorem 1.13 (Riesz-Markov-Kakutani). Let X be a locally compact8 Hausdorff space and a

functional9 ℓ : Cc(X,C) −→ C such that ℓ(f) ≥ 0 if f ≥ 0. Then, there exists a unique Borel

measure µ satisfying

ℓ(f) =

∫
X

dµ(x) f(x), ∀ f ∈ Cc(X,C),

with µ σ-finite, outer regular and inner regular for the open sets (or for the Borel sets with finite

measure) and such that (X,B(X), µ) is complete.

Remark 1.7. In case ℓ is the Riemann integral for (piece-wise) continuous functions, the previous

theorem gives rise to the definition of a particular measure µ called Lebesgue measure. This tells

us that all tools from calculus like integration by parts or integration by substitution are readily

available for the Lebesgue integral on R.

Theorem 1.14. Given a non-decreasing, right-continuous10 function f : R−→R, there exists a

unique regular Borel measure µf : B(R)−→ [0, +∞] satisfying

µf
(
(a, b ]

)
= f(b)−f(a), a < b and µf ({x}) = f(x)− lim

ϵ→ 0+
f(x− ϵ).

Two distinct functions provide the same measure iff they differ by a constant.

Remark 1.8. In the previous theorem, µf is called a Lebesgue-Stieltjes measure. Notice that the

value of the measure µf at the singleton {x} is zero iff f is continuous at x. Moreover, in case

f : x 7−→ x, then µf is the Lebesgue measure. Additionally, suppose f to be the Heaviside step

function (equal to 1 for non-negative x and to 0 in case x negative). Then, µf in this case is the

Dirac measure at 0, since µf (A) = 1 in case 0 ∈A, Borel set, while µf (A) = 0 otherwise.

Proposition 1.15. Let (X,Σ, µ) be a measure space and Y ⊆ R. Then, consider f : X×Y −→C
s.t. x 7−→ f(x, y) is integrable ∀ y ∈ Y and y 7−→ f(x, y) is differentiable µ – a.e. There holds

F (y) =

∫
A

dµ(x) f(x, y)

is differentiable in Y if there exists an integrable function g : X −→ C s.t.
∣∣ ∂
∂y
f( ·, y)

∣∣ ≤ g.

Moreover, x 7−→ ∂
∂y
f(x, y) is µ-measurable ∀ y ∈ Y and

d
dy
F (y) =

∫
A

dµ(x) ∂
∂y
f(x, y).

Theorem 1.16 (Radon-Nikodym). Let µ, ν : Σ−→ [0+∞] two σ-finite measures. One has ν ≪ µ

iff there exists a non-negative measurable function f : X−→ [0, +∞) such that

ν(A) =

∫
A

dµ(x) f(x), ∀A ∈ Σ.

The function f is determined uniquely µ – a.e. and is called the Radon-Nikodym derivative dν
dµ

of ν with respect to µ.

8For any point p ∈ X there exist G open and K compact such that p ∈ G ⊂ K.
9We denote by Cc(X;C) the set of complex-valued continuous functions on X with compact support.

10For a right-continuous function there holds f(x) = lim
ϵ→ 0+

f(x+ ϵ) for all x ∈ R.
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Theorem 1.17 (Lebesgue Decomposition). Let µ, ν : Σ −→ [0, +∞] be two σ-finite measures.

Then, ν can be uniquely decomposed as ν = νac + νsing with νac ≪ µ and νsing ⊥ µ.

Theorem 1.18 (Refinement of Lebesgue Decomposition). Let λ : B(X) −→ [0, +∞] be the

Lebesgue measure on X ⊆ R and ν another regular measure on X. Then, ν = νac + νsc + νpp

with νac ≪ λ, while νsc ⊥ λ, νpp ⊥ λ and νsc ⊥ νpp, where νpp is a pure-point measure, i.e.

νpp =
∑
n∈N

anδxn , where an≥ 0 and δxn is the Dirac measure centered at xn∈X .

Remark 1.9. Last theorem highlights that from one hand νpp is a discrete measure (or pure point

measure), while νsc must be continuous (since νsc ⊥ νpp), namely it has non-zero values only on

uncountable sets of Lebesgue measure zero (since νsc ⊥ λ). An example of a singularly continuous

measure is the Cantor measure.

Proposition 1.19. Let µ, ν, λ three σ-finite measures on the same σ-algebra.

• If ν ≪ λ and µ≪ λ one has d(ν+µ)
dλ

= dν
dλ

+ dµ
dλ
, λ – a.e.

• If ν ≪ µ≪ λ one has dν
dλ

= dν
dµ

dµ
dλ
, λ – a.e. ←− chain rule

In particular, in case ν ≪ µ and µ≪ ν, we have

dν
dµ

=
(
dµ
dν

)−1
, µ – a.e.

1.2 BANACH SPACES

Definition 1.15 (Normed Space). Given X a vector space over C, we say that (X, ∥·∥X) is a

normed space if the space X is equipped with a norm, i.e. a map ∥·∥X : X−→ [0, +∞) fulfilling

i) ∥f∥X = 0 ⇐⇒ f = 0,

ii) ∥αf∥X = |α| ∥f∥X , ∀α ∈ C,

iii) ∥f + g∥X ≤ ∥f∥X + ∥g∥X .

If condition 1. does not hold ∥·∥X is said a semi-norm.

Proposition 1.20 (Inverse Triangular Inequality). Given a normed space X , for any f, g ∈ X

there holds

∥f − g∥X ≥ | ∥f∥X− ∥g∥X |.

Remark 1.10. Every normed space X can be understood as a metric space, by introducing the

distance induced by the norm

dist(f, g) := ∥f − g∥X .
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As a consequence, one can induce a topology on X as the set of the open balls

τ = {BR(f0) | f0 ∈ X, R > 0}, BR(f0) := {f ∈ X | ∥f − f0∥X< R} .

Notice that any metric space is a Hausdorff topological space.

Remark 1.11. By the means of remark 1.10, a normed space is naturally equipped with a notion

of convergence. Given f ∈ X and a sequence {fn}n∈N ⊂ X converging to f in X as n grows

means

∥fn − f∥X −−−→n→∞
0.

Notice that one can adopt the same notion of convergence for a semi-normed space, but the limit

is not unique in that case.

Proposition 1.21. Given {fn}n∈N ⊂ X a Cauchy sequence in the normed space X one has

{∥fn∥X}n∈N ⊂R+ is a converging sequence.

Definition 1.16 (Banach Space). A normed space which is complete according to its norm is said

a Banach space, namely, every Cauchy sequence11 admits limit in X .

Remark 1.12. Owing to Proposition 1.20, the norm is continuous in a Banach space, namely

∀ {fn}n∈N ⊂X s.t. fn −−−→
n→∞

f ∈ X, one has ∥fn∥X −−−→n→∞
∥f∥X .

However, the converse is false: a sequence of vectors whose norm converge is not necessary con-

vergent in X .

Definition 1.17 (Density). Let D be a proper subset of X , Banach. D is said to be dense in X if

∀ f ∈ X ∃ {fn}n∈N ⊂ D s.t. fn −−−→
n→∞

f.

Consider a complex vector space X endowed with two distinct norms ∥·∥1 and ∥·∥2 . If there

exists c > 0 such that ∥f∥1 ≤ c ∥f∥2 for any f ∈ X , we say that ∥·∥2 is stronger than ∥·∥1 .

In particular, a Cauchy sequence in (X, ∥·∥2) is also Cauchy in (X, ∥·∥1) and any dense subspace

of (X, ∥·∥2) is also dense in (X, ∥·∥1). Two norms are called equivalent if there exists c > 1 s.t.

1

c
∥f∥2 ≤ ∥f∥1 ≤ c ∥f∥2 , ∀ f ∈ X.

Theorem 1.22. GivenX finite-dimensional normed space, all norms defined onX are equivalent.

Proposition 1.23 (Absolute Convergence). Let X be a Banach space and suppose {fn}n∈N ⊂ X

be a sequence satisfying
∑
n∈N
∥fn∥X < +∞. Then

∑
n∈N

fn := lim
N→∞

N∑
n=1

fn exists.

11All convergent sequences are also Cauchy, but the converse is not trivial in general!
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Definition 1.18 (Completion). Let X be an incomplete normed space and denote with XC , XC0

the vector spaces of the Cauchy sequences in X and the Cauchy sequences in X converging to 0,

respectively. One defines X̄ the completion of X according to its norm ∥·∥X as

X̄ := XC⧸XC0
,

namely, we identify Cauchy sequences whose difference converges to zero. Additionally, given

x̄ = [c] ∈ X̄ , where c = {cn}n∈N ∈XC stands for a representative of the equivalence class, the

map |||x̄||| := lim
n→∞

∥cn∥X defines a norm in X̄ (which does not depend on the equivalence class)

and one has that (X̄, ||| · |||) is a Banach space.

LINEAR OPERATORS

Definition 1.19 (Linear maps). Given X, Y two normed spaces, we denote by L (X, Y ) the set

of linear maps between a subset of X and Y , namely A : D(A) ⊆ X−→Y

A ∈ L (X, Y ) ⇐⇒ A(αf + βg) = α(Af) + β (Ag) ∈ Y, ∀α, β ∈ C, f, g ∈ D(A).

L (X) shall be a shortcut for L (X,X). For any A ∈ L (X, Y ) we denote by

D(A) ⊆ X the domain of A, namely a linear subset in which A is well-defined,
ran(A) the range of A, namely ran(A) := {g ∈ Y | ∃ f ∈ D(A) s.t. Af = g},

ker(A) :={f ∈ D(A) | Af = 0} denotes the kernel (or null space) of A.

Moreover, the vector space L (X, Y ) can be equipped with the operator norm defined as follows

∥A∥L(X,Y ) := sup
f∈D(A) :
∥f∥X=1

∥Af∥Y .

Definition 1.20 (Bounded Operators). We denote by B (X, Y ) the space of linear maps between a

subspace of X and Y (both normed spaces), which are bounded according to the norm ∥·∥L(X,Y ).

Also in this case, B (X) shall correspond to B (X,X).

Theorem 1.24. Given X a finite-dimensional normed space, one has L (X, Y ) = B (X, Y ) .

Proposition 1.25. B (X, Y ) is a Banach space with respect to ∥·∥L(X,Y ) if Y is Banach.

According to the previous definition we have that the space B (X,C) corresponds to the set of

linear and bounded functionals defined on X . This space is called the dual of X and it is also

sometimes denoted by X∗. Moreover, proposition 1.25 implies X∗ is a Banach, even if X is not.

Remark 1.13. Given X a normed space, another natural notion of convergence in X arises at

this point. We say that a sequence {fn}n∈N ⊂ X converges weakly to f ∈ X if

|ℓ(fn)− ℓ(f)| −−−→
n→∞

0, ∀ ℓ ∈ X∗.
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In this case the so-called weak topology is naturally induced

τw = {BwR (f0) | f0 ∈ X, R > 0}, BwR (f0) := {f ∈X | |ℓ(f)− ℓ(f0)| < R, ∀ ℓ ∈ X∗}.

Clearly, this is a weaker notion of convergence, since for all ℓ ∈ X∗

∥fn − f∥X−−−−→n→∞
0 =⇒ |ℓ(fn)− ℓ(f)| ≤ ∥ℓ∥L(X,C) ∥fn − f∥X −−−→n→∞

0.

Proposition 1.26. Given A∈L (Z, Y ) and B ∈L (X,Z) one has AB :=A ◦B ∈L (X, Y ) and

∥AB∥L(X,Y ) ≤ ∥A∥L(Z,Y ) ∥B∥L(X,Z) .

In particular, one has that the product of two bounded operators is bounded.

Definition 1.21 (Banach Algebra). A given X Banach space equipped with a product is called a

Banach algebra if such a product fulfils for any a, b, c ∈ X
• associativity: (ab)c = a(bc), α(ab) = (αa)b = a(αb), ∀α ∈ C;

• distributivity: (a+ b)c = ac+ bc, a(b+ c) = ab+ ac;

• continuity: ∥ab∥X ≤ ∥a∥X ∥b∥X .

Notice that this product is not commutative in general: ab ̸= ba.

An example of Banach algebra is the space of bounded operators B (X) withX Banach, endowed

with the product by composition. This kind of Banach algebra has an identity element

1X : f 7−→ f, ∥1X∥L(X) = 1.

Proposition 1.27. Let the function f : C−→C be represented by a power series with radius of

convergence12 R > 0

f(z) =
∑
j∈N0

fj z
j, |z| < R.

Moreover, let A ∈ B (X) be s.t. ∥A∥L(X)< R. Then13, because of propositions 1.23 and 1.26∑
j∈N0

fjA
j =: f(A) ∈ B (X) .

Definition 1.22 (Invertibility). We call a densely-defined, injective map A ∈ L (X, Y )

• invertible if ran(A) is dense in Y . In this case there exists a unique densely-defined injective

map A−1∈L (Y,X) such that D(A−1) = ran(A), ran(A−1) = D(A) and

AA−1ψ = ψ, ∀ψ ∈ ran(A), A−1Aϕ = ϕ, ∀ϕ ∈ D(A);

• boundedly invertible if there exists a unique injective operator A−1 ∈B (Y,X) such that

ran(A−1) = D(A) and

AA−1 = 1Y , A−1Aϕ = ϕ, ∀ϕ ∈ D(A).

12We remind that such a series converges absolutely if z is in a compact contained in the open disk of radius R.
13A map in L (X) raised to the zero power is by definition the identity map 1X .
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Proposition 1.28. Given A ∈ L (X, Y ) densely-defined, one has

i) A is injective iff ker(A) = {0}. Moreover, ker(A) is closed according to the topology

induced by ∥·∥X if A ∈ B (X, Y );

ii) A is boundedly invertible iff ran(A) is dense and there is some c > 0 s.t. inf
ψ∈D(A)

∥Aψ∥Y ≥ c;

iii) A is boundedly invertible if there exists some B ∈ L (X, Y ) boundedly invertible satisfying

sup
ψ∈D(A)∩D(B) :

∥ψ∥X=1

∥Aψ−Bψ∥Y
∥∥B−1

∥∥
L(Y,X)

< 1.

Definition 1.23 (Continuity). A ∈ L (X, Y ) is continuous if, given {fn}n∈N ⊂ D(A), one has

fn −−−→
n→∞

f in X, with f ∈ D(A) =⇒ Afn −−−→
n→∞

Af in Y.

Proposition 1.29 (Boundedness is Continuity). A linear map is continuous iff it is bounded.

Definition 1.24. Given A, Ã ∈ L (X, Y ) we say that Ã is an extension of A if

• Ãf = Af, ∀ f ∈ D(A);

• D(A) ⊆ D(Ã).

In this case we denote A ⊆ Ã. It is clear that A = Ã iff A ⊆ Ã and Ã ⊆ A.

Theorem 1.30 (BLT - Bounded, Linear Transform). Given A ∈ B (X, Y ), with Y a Banach

space and D(A) dense in X , there exists a unique extension Ã ∈ B (X, Y ) s.t. D(Ã) = X and

∥A∥L(X,Y ) = ∥Ã∥L(X,Y ).

Remark 1.14. According to theorem 1.30, there is no ambiguity in providing a densely-defined

and bounded operator, since there exists only one possible norm-preserving extension everywhere-

defined.

Theorem 1.31 (Banach-Steinhaus). Let X be a Banach space and Y a normed space. Given a

family of bounded operators F ⊂ B (X, Y ) fulfilling sup
A∈F
∥Af∥Y < +∞ for any fixed f ∈ X ,

then

sup
A∈F
∥A∥L(X,Y ) < +∞.

1.3 HILBERT SPACES

Definition 1.25 (Sesquilinear Forms). Let H be a vector space over C. A map s : H× H−→C is

said a sesquilinear form if it is anti-linear in its first variable14 and linear in the second one, i.e.

14This is the convention adopted by physicists.
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• s(α1f1 + α2f2, g) = ᾱ1s(f1, g) + ᾱ2s(f2, g), ∀ f1, f2, g ∈ H, α1, α2 ∈ C;

• s(f, α1g1 + α2g2) = α1s(f, g1) + α2s(f, g2), ∀ f, g1, g2 ∈ H, α1, α2 ∈ C.

Definition 1.26 (Inner Product). A sesquilinear form in H is said

• positive if s(f, f) > 0, ∀ f ∈ H∖ {0};
• symmetric if s(f, g) = s(g, f), ∀ f, g ∈ H.

A positive and symmetric sesquilinear form ⟨·, ·⟩H is called inner product.

Definition 1.27 (pre-Hilbert Space). A complex vector space that is endowed with an inner

product is said a pre-Hilbert space.

Notice that any pre-Hilbert space is also normed, since one always has the induced norm

∥·∥H =
√
⟨·, ·⟩H.

Proposition 1.32 (Cauchy-Schwarz-Bunjakowski inequality). Let H be a pre-Hilbert space and

f, g ∈ H. Then,

|⟨f, g⟩H| ≤ ∥f∥H ∥g∥H .

Moreover, equality holds iff f = αg for some α ∈ C or g = 0.

Theorem 1.33 (Jordan-Von Neumann). Let X be a normed space. Then, X is a pre-Hilbert space

(namely, there exists an inner product associated with ∥·∥X) iff the parallelogram identity holds,

i.e.

∥f + g∥2X + ∥f − g∥2X = 2 ∥f∥2X + 2 ∥g∥2X , ∀ f, g ∈ X.

In this case the inner product is defined via the polarization identity

⟨f, g⟩X :=
1

4

(
∥f + g∥2X − ∥f − g∥

2
X + i ∥f − ig∥2X − i ∥f + ig∥2X

)
.

Definition 1.28 (Hilbert Spaces). Given H a pre-Hilbert space, it is called Hilbert space if it is

complete according to the norm induced by its inner product.

Theorem 1.34 (Riesz). Given H a Hilbert space, for any linear and continuous functional ℓ ∈ H∗

there exists a unique vector φℓ ∈ H s.t. for any ψ ∈ H

ℓ(ψ) = ⟨φℓ, ψ⟩H, ∥φℓ∥H = ∥ℓ∥L(H,C) .

Remark 1.15. Notice that, owing to proposition 1.32, given a convergent sequence {fn}n∈N ⊂H

in a Hilbert space with fn −−−→
n→∞

f ∈ H, we also have lim
n→∞

⟨fn, g⟩H = ⟨f, g⟩H , namely, the map

f 7−→ ⟨f, g⟩H is continuous15 for any g ∈ H.

Moreover, because of theorem 1.34, the weak convergence in a Hilbert space is represented in

terms of inner products

lim
n→∞

ℓ(ψn) = ℓ(ψ), ∀ ℓ ∈ H∗ ⇐⇒ lim
n→∞

⟨φ, ψn⟩H = ⟨φ, ψ⟩H, ∀φ ∈ H.

15Clearly the same is true for any map sending g 7−→ ⟨f, g⟩H with fixed f ∈ H.
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We denote a sequence {ψn}n∈N ⊂ H weakly converging to ψ ∈ H in the following way

ψn−−−⇀
n→∞

ψ.

Proposition 1.35. Given H Hilbert space, let ψ ∈ H and {ψn}n∈N ⊂ H s.t. ψn−−−⇀
n→∞

ψ. Then,

i) ∥ψ∥H ≤ lim inf
n→∞

∥ψn∥H ; ←− The norm is lower semi-continuous in the weak topology

ii) sup
n∈N
∥ψn∥H < +∞;

iii) ψn −−−→
n→∞

ψ ⇐⇒ lim sup
n→∞

∥ψn∥H ≤ ∥ψ∥H ;

iv) if {ϕn}n∈N ⊂ H is such that ϕn −−−→
n→∞

ϕ ∈ H, one has lim
n→∞

⟨ψn, ϕn⟩H = ⟨ψ, ϕ⟩H.

ORTHOGONAL SUBSPACES

Definition 1.29 (Orthogonal Complement). Let M be a proper subset of a complex Hilbert space

H. We denote its orthogonal complement by M⊥ := {ψ ∈ H | ⟨ψ, φ⟩H = 0, ∀φ ∈M}.

Remark 1.16. Let M be a proper subset of H, complex Hilbert space. Then

• M⊥ is closed according to the topology induced by ∥·∥H because of the continuity of the

inner product;

• M⊥ defines a Hilbert subspace of H;

• M is dense in H iff M⊥ = {0};
• M⊥⊥ =M , namely the closure of M according to the norm ∥·∥H .

Exploiting this last property one can also prove that M is closed iff every weakly converging

Cauchy sequence in M has limit in M .

Theorem 1.36. Suppose H a complex Hilbert space and M ⊂ H closed. Then, there exists a

unique decomposition16 of any vector ψ ∈ H so that

ψ = ψ//+ ψ⊥, ψ// ∈M, ψ⊥∈M⊥.

Additionally,

min
φ∈M

∥ψ − φ∥H = ∥ψ − ψ//∥H = ∥ψ⊥∥H.

Definition 1.30 (Orthogonal Projections). We say that P ∈B (H) is an orthogonal projection if

P 2= P, ⟨P ψ, φ⟩H = ⟨ψ, P φ⟩H, ∀φ, ψ ∈ H.

Proposition 1.37. Suppose P ∈ B (H) orthogonal projection with P ̸= 0 and set M = ran(P ).

Then,

i) ∥P∥L(H)= 1;

16In this situation we write H =M ⊕M⊥.

Page 14



Foundations of Quantum Mechanics

ii) P ψ = ψ for all ψ ∈M and M is closed;

iii) φ ∈M⊥ implies P φ ∈M⊥ and thus P φ ∈M ∩M⊥ = {0}.

Definition 1.31 (Direct Sum). Let H1 and H2 be two complex Hilbert spaces. We define their

(orthogonal) direct sum H1⊕ H2 as the space composed of couples (ψ1, ψ2) ∈ H1× H2 endowed

with the inner product

⟨(ψ1, ψ2), (φ1, φ2)⟩H1⊕H2 = ⟨ψ1, φ1⟩H1+ ⟨ψ2, φ2⟩H2 .

Unsurprisingly, H1⊕H2 is a Hilbert space. It is a common use to write ψ1+ψ2 instead of (ψ1, ψ2)

thinking of H1 and H2 as two orthogonal and complementary Hilbert subspaces of the bigger

Hilbert space H1⊕ H2.

More generally, given {Hn}n∈N a set of (at most) countable complex Hilbert spaces, we define⊕
n∈N

Hn :=

{∑
n∈N

ψn, ψn ∈ Hn

∣∣∣∣ ∑
n∈N
∥ψn∥2Hn< +∞

}
where the inner product is

⟨
∑
j∈N

φj,
∑
k∈N

ψk ⟩⊕ :=
∑
n∈N
⟨φn, ψn⟩Hn

Definition 1.32 (Tensor Product). Let H1 and H2 be two complex Hilbert spaces. Let Fn(H1,H2)

be given by the set of linear combinations of n couples in H1×H2

Fn(H1,H2) =

{
n∑
j=1

αj (ψj, φj)

∣∣∣∣ (ψj, φj)∈ H1×H2, αj ∈ C
}
.

Then consider the quotient ⋃
n∈N

Fn(H1,H2)⧸∼ ,

where the equivalence is described in the following

• (ψ1 + ψ2, φ) ∼ (ψ1, φ) + (ψ2, φ);

• (ψ, φ1 + φ2) ∼ (ψ, φ1) + (ψ, φ2);

• (αψ, φ) ∼ α(ψ, φ) ∼ (ψ, αφ), α ∈ C.

We define the tensor product H1⊗H2 as the completion of
⋃
n∈N

Fn(H1,H2)⧸∼ according to the

norm induced by the inner product

⟨(ψ1, ψ2), (φ1, φ2)⟩H1⊗H2 = ⟨ψ1, φ1⟩H1⟨ψ2, φ2⟩H2 .

A couple (ψ, φ) ∈ H1⊗H2 is denoted by ψ⊗φ.

Remark 1.17. Notice that, as simple cases, one has
⊕
n∈N

C = ℓ2(N) and H⊗Cn = Hn.

Moreover, an equality ψ⊗φ = ψ′⊗ φ′ holds when there is some α ∈ C∖ {0} such that ψ = αψ′

and φ = α−1φ′.
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Definition 1.33 (Unitary Operator). A bijective map U ∈B (H1,H2) is said a unitary operator
between two complex Hilbert spaces if

⟨Uφ, Uψ⟩H2 = ⟨φ, ψ⟩H1 , ∀φ, ψ ∈ H1,

or, equivalently (due to the polarization identity), if

∥Uψ∥H2
= ∥ψ∥H1

, ∀ψ ∈ H1.

In this case H1 and H2 are said to be unitarily equivalent through U .

Proposition 1.38. Given H1,H2 complex Hilbert spaces and M ⊆ H1, one has

UM⊥ = (UM)⊥, ∀U ∈ B (H1,H2) unitary.

Remark 1.18. Because of the previous proposition one has that, whenever two Hilbert spaces are

unitarily equivalent, each orthogonal subspace in H1 has its own unitarily equivalent representa-

tion in H2, so that the structure of the orthogonal components is preserved.

COMPLETE ORTHONORMAL SYSTEMS

Lemma 1.39. Let {φj}nj=1 be an orthonormal set17 in a complex Hilbert space H. Then for any

ψ ∈ H one has

ψ = ψ//+ ψ⊥, ψ//=
n∑
j=1

⟨φj, ψ⟩H φj, ⟨φj, ψ⊥⟩H = 0, ∀ j ∈ {1, . . . , n}.

Additionally, ∥ψ∥2H = ∥ψ⊥∥2H +
n∑
j=1

|⟨φj, ψ⟩H|2.

Remark 1.19. Notice that in the previous lemma, for any ϕ ∈ span{φj} one has

∥ψ − ϕ∥H ≥ ∥ψ⊥∥H

since equality is attained for ϕ = ψ// because of theorem 1.36.

Moreover, there holds the so called Bessel inequality

∥ψ∥2H ≥
n∑
j=1

|⟨φj, ψ⟩H|2.

This implies that even18 in case n −→∞, the series
∑∞

j=1 |⟨φj, ψ⟩H|2 converges. In particular,

∥
∑n

j=m⟨φj, ψ⟩H φj∥2H =
∑n

j=m |⟨φj, ψ⟩H|2 for any n,m ∈ N, hence {
∑n

j=1⟨φj, ψ⟩H φj}n∈N is

a Cauchy sequence in H iff {
∑n

j=1 |⟨φj, ψ⟩H|2}n∈N is Cauchy in R+.

In other words,
∑∞

j=1⟨φj, ψ⟩H φj is a well-defined vector in H.

17In the sense that ⟨φj , φk⟩H = δjk, ∀ j, k ∈ {1, . . . , n}.
18Actually, the Bessel inequality implies that

∑
j∈J |⟨φj , ψ⟩H|2 converges for any interval J . Indeed, in this case,

⟨φj , ψ⟩H ̸= 0 at most for a countable number of indices j ∈ J .
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Theorem 1.40 (Complete Orthonormal System). Given {φj}j∈N an orthonormal set in the com-

plex Hilbert space H, the following statements are equivalent

i) span{φj}j∈N is dense in H;

ii) ∀ψ ∈H one has ψ =
∑
j∈N
⟨φj, ψ⟩H φj ; ←− {⟨φj ,ψ⟩H}j∈N∈ ℓ2(N) are the Fourier coefficients.

iii) ∀ϕ, ψ ∈ H one has ⟨ϕ, ψ⟩H =
∑
j∈N
⟨ϕ, φj⟩H⟨φj, ψ⟩H; ←− Parseval equality.

iv) ⟨φj, ψ⟩ = 0, ∀ j ∈ N =⇒ ψ = 0.

The previous theorem also holds for an orthonormal set {φj}j∈J with J interval.

A complete orthonormal system is also called an orthonormal basis.

Theorem 1.41. Every Hilbert space has an orthonormal basis. If a basis is countable, then every

other possible basis is. The dimension of a Hilbert space is the number of elements composing the

basis.

Definition 1.34 (Separability). A Hilbert space with a countable orthonormal basis is separable.

Remark 1.20. Every infinite-dimensional, separable and complex Hilbert space H is unitarily

equivalent to ℓ2(N). Indeed, let {φj}j∈N ⊂ H be an orthonormal basis, then define the operator

U : H−→ℓ2(N), U : ψ 7−→ {⟨φj, ψ⟩}j∈N.

One can prove that U is a bijection and there holds ∥Uψ∥2ℓ2(N) =
∑

j∈N |⟨φj, ψ⟩H|2 = ∥ψ∥
2
H .

Proposition 1.42. Given an orthonormal basis {φj}j∈N in a complex, separable Hilbert space

H, one has that any operator A ∈B (H) is uniquely characterized by its matrix-elements Aij :=

⟨φi, Aφj⟩H since for all ψ ∈ H

Aψ =
∑
j∈N

aj(ψ)φj, where aj(ψ) :=
∑
k∈N

Ajk ⟨φk, ψ⟩H.

However, B (H) is not separable if dimH= +∞ (we do not have a countable base for B (H)).

Proposition 1.43. If {φj}j∈N and {φ̃k}k∈N are two orthonormal bases for H and H̃, respectively,

then the set {φj⊗ φ̃k}(j,k)∈N2 is an orthonormal basis for H⊗ H̃.

1.4 OPERATOR TOPOLOGIES

In this section we provide a brief description of the major families of bounded operators one

could deal with, highlighting their main properties.

Definition 1.35 (Adjoint Operator). Given two Hilbert spaces H1,H2 and a bounded operator

A ∈ B (H1,H2), we define its adjoint A∗∈B (H2,H1) as

⟨φ, A∗ψ⟩H1 = ⟨Aφ, ψ⟩H2 , ∀φ ∈ H1, ψ ∈ H2.
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Proposition 1.44. Let A,B ∈ B (H1,H2) and C ∈ B (H2,H3). Then,

i) (A+B)∗ = A∗+B∗, (αA)∗ = ᾱA∗, ∀α ∈ C;
ii) A∗∗ = A;

iii) (CA)∗ = A∗C∗ ∈ B (H3,H1);

iv) ker(A∗) = ran(A)⊥;

v) ∥A∥2L(H1,H2)
= ∥A∗A∥L(H1)

= ∥AA∗∥L(H2)
.

Remark 1.21. In particular, there also holds ∥A∥L(H1,H2)
= ∥A∗∥L(H2,H1)

. Indeed,

∥A∥2L(H1,H2)
= ∥AA∗∥L(H2)

≤ ∥A∥L(H1,H2)
∥A∗∥L(H2,H1)

=⇒ ∥A∥L(H1,H2)
≤ ∥A∗∥L(H2,H1)

,

hence, in particular one also has ∥A∗∥L(H2,H1)
≤ ∥A∗∗∥L(H1,H2)

= ∥A∥L(H1,H2)
, providing the

result. This means that the anti-linear map ∗ : A 7−→ A∗ is continuous in B (H1,H2).

Definition 1.36 (C⋆-algebra). Given a Banach algebra a and an involution ⋆ (i.e. a map equal to

its inverse), we say that (a, ⋆) is a C⋆-algebra if

• (a+ b)⋆ = a⋆ + b⋆, (αa)⋆ = ᾱ a⋆, ∀α ∈ C,
• (ab)⋆ = b⋆a⋆,

• ∥a∥2a = ∥a⋆a∥a = ∥aa⋆∥a .

Definition 1.37. A sub-algebra of the C⋆-algebra (a, ⋆) is said an ideal i ⊂ a if

ab ∈ i, ba ∈ i, ∀ a ∈ i, b ∈ a.

Moreover, if i is closed under the involution it is said a ⋆-ideal.

A ⋆-homomorphism is a map h : (a, ⋆1)−→(b, ⋆2) such that

h(ab) = h(a)h(b), h(a⋆1) = h(a)⋆2 .

In particular, if there exists an identity element e ∈ a and b is ⋆-homomorphic to a, then also b

must have an identity element, e.g. h(e) (h is not necessarily injective).

Remark 1.22. If there exists an identity element in the Banach algebra e ∈ a : ea = a, ∀ a ∈ a

(or neutral element), then ee⋆ = e⋆ and (ee⋆)⋆ = e, therefore e = e⋆. This also implies that for

any invertible b ∈ a one has b⋆ is invertible, since

b−1b = bb−1 = e =⇒ b⋆(b−1)⋆ = (b−1)⋆b⋆ = e =⇒ (b−1)⋆ = (b⋆)−1.

As an example, B (H) is a C⋆-algebra if equipped with the anti-linear map ∗ : A 7−→ A∗.

Definition 1.38. An element a of a C⋆-algebra (a, ⋆) is said to be

• normal, if aa⋆ = a⋆a,

• self-adjoint, if a⋆ = a,

• unitary, if a⋆a = aa⋆ = e,

Page 18



Foundations of Quantum Mechanics

• orthogonal projection, if a2 = a = a⋆,

• non-negative, if ∃ b ∈ a : a = b⋆b.

Proposition 1.45 (Characterization of Normal Operators). Given N ∈ B (H), one has

NN∗= N∗N ⇐⇒ ∥Nψ∥L(H) = ∥N
∗ψ∥L(H) , ∀ψ ∈ H.

The same result can be generalized for N ∈L (H) in case D(N) = D(N∗), provided a proper

definition of the adjoint for densely-defined linear maps that shall be disclosed in section 2.1.

Definition 1.39 (Compact Operators). A bounded operator K∈B (H1,H2) is said compact if

∀ {ψn}n∈N ⊂ H1 : ψn−−−⇀
n→∞

ψ ∈ H1, Kψn −−−→
n→∞

Kψ in H2.

Remark 1.23. By definition, given B1 ∈ B (H2,H3) , B2 ∈ B (H3,H1) two bounded operators

and K ∈B (H1,H2) compact one has

B1K ∈ B (H1,H3) is compact, KB2 ∈ B (H3,H2) is compact.

For instance, the set of self-adjoint compact operators is a ⋆-ideal of (B (H), ∗).

Theorem 1.46 (Canonical Form of Compact Operators). Let K ∈B (H1,H2) be compact. Then

there exists a couple of orthonormal sets {ϕn}n∈N ⊂ H1, {φn}n∈N ⊂ H2 and positive numbers

{sn(K)}n∈N ⊂ ℓ∞(N) such that

K =
∑
n∈N

sn(K)⟨ϕn, · ⟩H1φn, K∗ =
∑
n∈N

sn(K)⟨φn, · ⟩H2ϕn.

Moreover, there holds ∥K∥L(H1,H2)
= max

n∈N
sn(K).

One has Kϕj = sj(K)φj and K∗φj = sj(K)ϕj , hence sj(K), which are called the singular
values ofK, are defined as the square root of the eigenvalues ofKK∗∈B (H2) orK∗K∈B (H1).

A compact operator is said of finite rank in case its singular values are eventually zero.

In caseK∈B (H1) is self-adjoint one can choose φn = σnϕn, with σn ∈ {−1, 1} so that σj sj(K)

are the eigenvalues ofK. Together with proposition 1.42 this argument proves the following result.

Proposition 1.47. Let A ∈ B (H) be self-adjoint. Then

A is compact ⇐⇒ there exists an orthonormal basis of eigenvectors of A.

Definition 1.40 (Operators Topologies). Given A ∈ L (H1,H2) and a sequence of linear maps

An ∈ L (H1,H2) with19 D(A) = lim inf
n→∞

D(An), we say that

• An converges uniformly to A, denoting An −−−→
n→∞

A if

∀ ϵ>0 ∃ N ∈N : ∀n≥N sup
{
∥Anψ −Aψ∥H2

∣∣∣ ψ ∈ ⋂
n≥N

D(An), ∥ψ∥H1
= 1

}
< ϵ;

19Here, given a sequence of sets {Sn}n∈N we mean lim inf
n→∞

Sn :=
⋃

n∈N

⋂
j≥n

Sj .
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• An converges strongly to A, denoting An
s−−−→

n→∞
A if

∀ ϵ>0 ∃ N ∈N : ∀n≥N ∥Anψ −Aψ∥H2
< ϵ, ∀ψ ∈

⋂
n≥N

D(An);

• An converges weakly to A, denoting An
w−−−→

n→∞
A if

∀ ϵ>0 ∃ N ∈N : ∀n≥N |⟨φ, Anψ −Aψ⟩H2|< ϵ, ∀φ ∈ H2, ∀ψ ∈
⋂
n≥N

D(An).

Remark 1.24. As suggested by the names, the uniform convergence implies strong convergence

which also implies the weak one. Additionally,

• if {An}n∈N ⊂ B (H1,H2) and An −−−→
n→∞

A ∈ B (H1,H2), as a consequence of proposi-

tion 1.20, one has ∥An∥L(H1,H2)
−−−→
n→∞

∥A∥L(H1,H2)
;

• similarly, given {An}n∈N ⊂ L (H1,H2) such that An
s−−−→

n→∞
A ∈ L (H1,H2), one has

∥Anψ − Aψ∥2H2
= ∥Anψ∥2H2

− 2Re ⟨Aψ, Anψ⟩H2 + ∥Aψ∥
2
H2
, ∀ψ ∈ D(A) ∩D(An),

hence, since one also has An
w−−−→

n→∞
A, the previous expression implies

∀ ϵ>0 ∃ N ∈N : ∀n≥N | ∥Anψ∥H2
− ∥Aψ∥H2

|< ϵ, ∀ψ ∈
⋂
n≥N

D(An).

Remark 1.25. Given {An}n∈N ⊂L (H1,H2) s.t. An
w−−−→

n→∞
A∈L (H1,H2) and K∈B (H2,H3)

compact, one has
KAn

s−−−→
n→∞

KA ∈ L (H1,H3).

Proposition 1.48. Consider {An}n∈N ⊂ B (H2,H3) such that An
s−−−→

n→∞
A ∈ B (H2,H3) and

K∈B (H1,H2) . Then

AnK −−−→
n→∞

AK ∈ B (H1,H3) ⇐⇒ K is compact.

Additionally, in case {An}n∈N ⊂ B (H2) are normal with An
s−−−→

n→∞
A∈B (H2), one also has

K∗An −−−→
n→∞

K∗A ∈ B (H2,H1) ⇐⇒ K is compact.

Proposition 1.49 (The Space of Compact Operators is Closed). Let {Kn}n∈N ⊂B (H1,H2) be a

sequence of compact operators such that Kn −−−→
n→∞

K ∈B (H1,H2). Then, K is compact.

Corollary 1.50. One can always write a compact operator as a limit of finite rank operators.

Remark 1.26. Suppose {An}n∈N ⊂ B (H1,H2) and A ∈ B (H1,H2). Then, the anti-linear map
∗ : A 7−→ A∗ is continuous in the weak-operator topology, namely

An
w−−−→

n→∞
A =⇒ A∗

n
w−−−→

n→∞
A∗.

However, this is not the case for the strong-operator topology, unless we restrict ourselves to the

set of normal operators (see proposition 1.45).
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Proposition 1.51. Let {An}n∈N ⊂ B (H1,H2) be a sequence of bounded operators. Then,

i) if {An}n∈N is Cauchy in the weak-operator topology, then sup
n∈N
∥An∥L(H1,H2)

< +∞;

ii) An
w−−−→

n→∞
A =⇒ ∥A∥L(H1,H2)

≤ lim inf
n→∞

∥An∥L(H1,H2)
;

iii) if sup
n∈N
∥An∥L(H1,H2)

< +∞ and Anψ −−−→
n→∞

Aψ in H2 for any ψ in a dense subspace of H1 ,

one has An
s−−−→

n→∞
A.

Proposition 1.52. Let {An}n∈N ⊂ B (H1,H2) and {Bn}n∈N ⊂ B (H3,H1). Then,

i) An
s−−−→

n→∞
A and Bn

s−−−→
n→∞

B =⇒ AnBn
s−−−→

n→∞
AB;

ii) An
w−−−→

n→∞
A and Bn

s−−−→
n→∞

B =⇒ AnBn
w−−−→

n→∞
AB;

iii) An −−−→
n→∞

A and Bn
w−−−→

n→∞
B =⇒ AnBn

w−−−→
n→∞

AB.

We can notice that the product by composition is continuous in the strong-operator topology (we

already know that it is continuous in the uniform-operator topology too).

Definition 1.41 (One-Parameter, Strongly-Continuous Unitary Group). A one-parameter, strongly

continuous unitary group is defined as a family of unitary operators {U(t)}t∈R⊂B (H) satisfying

• U(0) = 1H;

• U(t+ s) = U(t)U(s) = U(s)U(t); ←− hence U(t)−1=U(−t), by picking s=−t.

• U(t) s−−−→
t→ t0

U(t0).

The above definition identifies a group, since

• there exists the neutral element U(0);

• the operation of the group, namely the product by composition, is associative;

• for any element U(t) there exists its inverse U(−t).
To such a (abelian) group there can always be associate an infinitesimal generator

Gψ := i lim
t→ 0

U(t)− 1

t
ψ, ∀ψ ∈D(G) =

{
ϕ ∈ H | ∃ lim

t→ 0

U(t)ϕ−ϕ
t

}
.

Remark 1.27. Assume for simplicity that G ∈B (H). Then, it is straightforward to see that G is

self-adjoint (we shall provide the notion of self-adjointness for unbounded operators in the next

chapter).

Theorem 1.53 (Stone’s theorem). Suppose U(·) is a strongly continuous, one-parameter unitary

group on H. Then, the associated infinitesimal generator A is densely defined and self-adjoint and

U(t) = e−itA for all t ∈ R.

Remark 1.28. The Stone’s theorem ensures that, given a generator, there is only one correspond-

ing strongly continuous, one-parameter unitary group.

Corollary 1.54. Suppose U(t) = e−itA leaves invariant a dense subset D ⊂ D(A). Then, A is

essentially self-adjoint on D.
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Definition 1.42 (Unitary Representations). Given a group (G, ·), we say that ρ : G−→B (H) is a

unitary-representation of G in H if20

• ρg ∈ B (H) is a unitary operator for all g ∈ G;

• ρe = 1H, if e is the neutral element of G (namely, e · g = g · e = g, ∀ g ∈ G);
• ρsρt = ρs·t, ∀ s, t ∈ G. ←− hence ρs−1= ρ−1

s

Remark 1.29. Notice that, given the (abelian) group of symmetry of translations in the real axis,

i.e. (R,+), one has that a one-parameter, strongly-continuous unitary group {U(t)}t∈R ⊂ B (H)

is, by definition, a unitary-representation of (R,+) in H.

Definition 1.43 (Equivalent Representations). We say that two unitary-representations of the same

group ρ : G−→B (H), ρ′ : G−→B (H′) are equivalent if

∃ U ∈ B (H,H′) unitary operator s.t. ρ′gU = Uρg, ∀ g ∈ G.

Definition 1.44 (Irreducible Representations). A unitary-representation ρ of a group (G, ·) in the

complex Hilbert space H is said reducible if there exists a proper Hilbert subspace X ⊊ H s.t.

ρgψ ∈X, ∀ψ ∈X, g ∈ G.

Similarly, ρ is said irreducible if it is not reducible.

Remark 1.30. A given reducible unitary-representation ρ : G−→B (H) can be written in terms

of its 21 (at most countably many) irreducible unitary-representations {ϱj} as follows

ρg =
∑
j∈N

ϱjgPj, ∀ g ∈ G,

with {Pj}j∈N orthogonal projections satisfying PjPk = δjkPj and
∑
j∈N

Pj = 1H (if {ϱj} are fi-

nitely many, Pj is eventually the zero operator in this notation).

In other words, because of proposition 1.38, the irreducible unitary-representations induce a de-

composition of H in terms of orthogonal subspaces

H =
⊕
j∈N

Hj, Hj := ran(Pj).

20In caseG has infinite elements and it is a Hausdorff topological group, we also require the unitary representation

to be a strongly-continuous homomorphism: if {gn}n∈N ⊂ G is s.t. gn −−−−→
n→∞

g ∈ G, then ρgn
s−−−−→

n→∞
ρg.

21Such a decomposition is not unique!
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2. AXIOMS OF QUANTUM MECHANICS

Here we provide the Von Neumann (axiomatic) formulation of Quantum Mechanics (1955).

1. Pure states. Given H a complex and separable Hilbert space, the pure state associated

with an isolated physical system is represented, at a fixed time, by a vector (or unit ray)

|ψ⟩ ∈ {ϕ∈H | ∥ϕ∥H=1}⧸∼ , with

ϕ1 ∼ ϕ2 ⇐⇒ ∃ θ ∈ [0, 2π) : ϕ1= eiθϕ2.

2. Observables. Every observable a is represented by a linear map A ∈ L (H) defined max-

imally on a dense subset D(A). The expectation value for a measurement of a, when the

system is in the pure state |ψ⟩, ψ ∈D(A) is1

Eψ[a ] = ⟨ψ|A|ψ⟩ := ⟨ψ, Aψ⟩H ∈ R.

3. Dynamics. The time-evolution is implemented by a strongly-continuous, one-parameter

unitary group {U(t)}t∈R whose generator corresponds to the observable associated with the

energy of the system.

4. Measurement. When a measurement of an observable a is performed on a pure state

|ϕ⟩, ϕ ∈D(A) and the result of such a measurement is the number λ ∈ R, then the system

will collapse in a pure state |φ⟩, φ∈D(A) which satisfies

Aφ = λφ.

Remark 2.1. One can also provide a description of quantum systems in a so-called mixed state,

where the knowledge of the system itself is not maximal.

Remark 2.2. We shall see that the second axiom actually identifies the class of densely-defined,

self-adjoint operators.

At this point we just mention that requiring ⟨ψ, Aψ⟩H ∈ R means

Im⟨ψ, Aψ⟩H = Im⟨Aψ, ψ⟩H= 0,

hence

⟨ψ, Aψ⟩H = ⟨Aψ, ψ⟩H.
1According to the Dirac notation ⟨ψ| := |ψ̄⟩, and ⟨ψ |ψ⟩ := ∥ψ∥2H = 1 does not depend on the equivalence class.
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Remark 2.3. Let H,D(H) ∈ L (H) be the (time-independent) observable associated with the

energy of a system in the pure initial state |ψ0⟩, ψ0 ∈ D(H). Moreover, let {U(t)}t∈R be the

strongly-continuous one-parameter unitary group describing the dynamics. Then the Schrödinger
equation

i d
dt
|ψt⟩ = H|ψt⟩ , ψt ∈ D(H)

is solved (uniquely) by |ψt⟩ = U(t) |ψ0⟩ for all t ∈ R. Indeed, by construction

iU ′(t)ψ0 = i lim
s→ 0

U(t+ s)ψ0 − U(t)ψ0

s
= i lim

s→ 0

U(s)− 1H

s
U(t)ψ0 = HU(t)ψ0.

Conversely, because of Stone’s theorem we know the dynamics is given by U(t) = e−iHt, so that

for any initial pure state2|ψ0⟩, ψ0 ∈H we have the time-evolution given by |ψt⟩ = U(t)|ψ0⟩. We

will provide the meaning of a function of an unbounded operator in section 2.4.

Notice that the dynamics is a unitary representation of the symmetry associated with the group of

time-translations (we are indeed assuming a time-independent Hamiltonian).

Remark 2.4. The last axiom is an abdication of the theory in describing universally the phe-

nomena of reality, since it makes distinction between the quantum (microscopic) world and the

measuring apparatus (which is macroscopic and outside the theory).

In light of remark 2.2, a further understanding of the notion of self-adjointness in L (H)∖B (H)

is required. However, for unbounded linear maps we don’t have the BLT theorem 1.30, therefore

A ∈ L (H1,H2) is not ambiguous only in a given domain of definition D(A).

We denote by A,D(A) such an unbounded operator (sometimes it is written as A ↾ D(A)).

2.1 UNBOUNDED OPERATORS

Definition 2.1 (Symmetric Operator). A densely-defined operator A,D(A) ∈ L (H) is said sym-
metric (or hermitian) if

⟨φ, Aψ⟩H = ⟨Aφ, ψ⟩H, ∀φ, ψ ∈ D(A).

Proposition 2.1. A,D(A)∈L (H) is symmetric iff ⟨ψ, Aψ⟩H∈R for each ψ∈D(A).

However, a symmetric operator cannot be associated with an observable, since we still need to

require maximal definition (namely, such a symmetric operator must not have a proper extension).

2From one hand a pure state satisfying the Schrödinger equation at time tmust be in D(H), whereas the dynamics

define the evolution in all H (since it is bounded).
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CLOSEDNESS

Definition 2.2 (Closed Operator). Given a densely-defined T,D(T ) ∈ L (H1,H2) we say that

T,D(T ) is closed if ∀ {ψn}n∈N ⊂ D(T ) such that ψn −−−→
n→∞

ψ in H1 one has

∥Tψn − φ∥H2
−−−−→
n→∞

0 for some φ ∈ H2 =⇒ ψ ∈ D(T ) ∧ φ = Tψ.

In other words, T,D(T ) is closed if for any convergent sequence in H1 that makes convergent the

sequence {Tψn}n∈N ⊂ H2, one finds the limit of ψn in D(T ) (in principle it is only in H1).

This is the closest property to continuity one can demand for unbounded operators.

Definition 2.3 (Closable Operator). An operator A,D(A) ∈ L (H1,H2) is closable if there exists

an extension Ã,D(Ã) ∈ L (H1,H2) that is closed.

Definition 2.4 (Graph). Given A,D(A) ∈ L (H1,H2), we define its graph set3 as

G (A) := {(ψ,Aψ) ∈ H1× H2 | ψ ∈ D(A)}.
One can also introduce the graph norm in the subspace D(A) as

∥ψ∥2G (A) := ∥ψ∥
2
H1
+ ∥Aψ∥2H2

, ∀ψ ∈ D(A).

Definition 2.5 (Closure of an Operator). Given a closable operator A,D(A) ∈ L (H1,H2) we

define its closure Ā,D(Ā) ∈ L (H1,H2) as the unique closed extension of A,D(A) satisfying

A ⊆ Ā, G (Ā) = G (A).

Here the topology that selects the closed sets in H1× H2 is the one induced by the graph norm.

Proposition 2.2. Any closed operator has closed graph and closed kernel.

Proposition 2.3. Given A,D(A) ∈ L (H1,H2) closed and B ∈ B (H3,H1). Then, the operator

AB,D(AB) ∈ L (H3,H2) is closed, with D(AB) = {ψ ∈ H3 | Bψ ∈ D(A)}.
Moreover, if C ∈ B (H2,H3) is boundedly-invertible, CA,D(A) ∈ L (H1,H3) is closed.

Theorem 2.4 (Closed Graph). Given the operator A,H1 ∈ L (H1,H2) one has

A ∈ B (H1,H2) ⇐⇒ A,H1 is closed.

There are indeed pathological examples for which an unbounded operator can be everywhere-

defined, if it is not closed. For instance, consider the separable Hilbert space H with {φj}j∈N an

orthonormal basis and Peven the projection onto span{φj}j∈2N. Then let A,H ∈ L (H) be given

by

Aψ =


ℓ∑

k=1

bk akφbk , if Pevenψ =
ℓ∑

k=1

akφbk with ℓ ∈ N, {ak}ℓk=1⊂C, {bk}ℓk=1⊂ 2N;

0, otherwise.

In other words, if ψ has a non-zero projection in the space of finite linear combinations of even

elements of the basis, A acts multiplying each term by its label, while it returns zero otherwise.

Since Aφ2n = 2nφ2n it is clear that ∥Aφ2n∥H −−−→n→∞
+∞, hence A,H is unbounded.

3Notice that (G (A), ∥·∥G (A)) ⊂ D(A)⊕ ran(A).
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Definition 2.6 (Adjoint Operator). Given a densely-defined operator A,D(A) ∈L (H1,H2), its

adjoint A∗,D(A∗) ∈ L (H2,H1) is defined by

D(A∗) :=
{
ψ ∈ H2

∣∣ ∃! Ψ ∈ H1 : ⟨ψ, Aφ⟩H2 = ⟨Ψ, φ⟩H1 , ∀φ ∈ D(A)
}
;

A∗ψ = Ψ.

This definition is not well-posed if D(A) is not dense in H1, since there would be an orthogonal

complement of D(A) which makes ambiguous the definition ofA∗ψ =Ψ+φ⊥ with φ⊥∈D(A)⊥.

Remark 2.5. Observe that, given A,D(A), B,D(B) ∈ L (H1,H2) densely-defined with A ⊆ B,

the condition in the definition of the domain for the adjoint operator must be stricter (holding in a

larger set) for B rather than A, resulting in a smaller domain B∗ ⊆ A∗.

Proposition 2.5 (Closed Adjoint). For any densely-defined A,D(A) ∈ L (H1,H2) one has that

its adjoint A∗,D(A∗) ∈ L (H2,H1) is closed. Moreover, A,D(A) is closable iff A∗,D(A∗) is

densely-defined, in which case one has Ā = A∗∗ and (Ā)
∗
= A∗.

Remark 2.6. We know that the adjoint of a bounded operator is bounded. Moreover, sinceA∗∗= Ā

one has for any densely-defined and closable A,D(A) ∈ L (H1,H2) that

Ā ∈ B (H1,H2) ⇐⇒ A∗ ∈ B (H2,H1) .

Proposition 2.6. Any normal operator A,D(A) ∈ L (H) (namely, such that D(A) = D(A∗) and

∥Aψ∥H = ∥A∗ψ∥H for all ψ ∈ D(A)) is closed.

Proposition 2.7. Given A,D(A), B,D(B)∈L (H1,H2) and C,D(C)∈L (H2,H3) all densely-

defined with D(CA) = {ψ ∈ D(A) | Aψ ∈ D(C)} dense in H1, one has4

i) A∗+B∗ ⊆ (A+B)∗, (αA)∗= ᾱA∗, ∀α ∈ C; ←− D(A+B)=D(A)∩D(B)

ii) A∗C∗ ⊆ (CA)∗;

iii) ker(A∗) = ran(A)⊥;

iv) if A,D(A) is invertible, then A∗,D(A∗) is invertible and (A∗)−1= (A−1)
∗
.

Additionally, if A,D(A) is also closable with ker(Ā) = {0}, then (Ā)−1 = A−1.

Remark 2.7. Proposition 2.7 iv) implies that the inverse of an invertible, closed operator is closed.

Proposition 2.8. Let A,D(A)∈L (H) be closed and z ∈C. Suppose there exists c > 0 such that

∥(A− z)ψ∥H > c ∥ψ∥H , ∀ψ ∈ D(A).

Then, ran(A− z) is a closed subspace of H.

Proposition 2.9. Let S,D(S) ∈ L (H) be a symmetric operator. Then, S,D(S) is closable,

S̄,D(S̄) is also symmetric and there holds

S ⊆ S̄ ⊆ S∗. ←− (S∗ may not be symmetric!)

4In points i) and ii) equality holds in case B and C are bounded.
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In light of the previous proposition, we know that everywhere-defined symmetric operators must

be closed and therefore, thanks to theorem 2.4 one has

Proposition 2.10 (Hellinger-Toeplitz). An everywhere-defined symmetric operator is bounded.

SELF-ADJOINTNESS

Definition 2.7 (Self-Adjoint Operator). We say that a symmetric operator S,D(S)∈L (H) is self-
adjoint if S = S∗. Additionally, we say that S,D(S) is essentially self-adjoint if S ⊆ S̄ = S∗.

Proposition 2.11. A self-adjoint operator is maximally defined.

Indeed, there is no way of finding a proper extension for a self-adjoint operator that is symmetric

since, assuming there exists a symmetric extension S̃,D(S̃) ∈L (H) of the self-adjoint operator

S,D(S)∈L (H), one has

S ⊆ S̃ ⊆ S̃∗⊆ S∗= S =⇒ S = S̃.

Definition 2.8 (Positivity). A symmetric operator S,D(S) ∈L (H) is non-negative (or positive

semi-definite) if

⟨ψ, Sψ⟩H ≥ 0, ∀ψ ∈ D(S).

S,D(S) is said lower-bounded by γ ∈R, or S ≥ γ, if S− γ1H,D(S) is non-negative. Addition-

ally, S,D(S) is positive-definite if there exists γ > 0 s.t. S ≥ γ.

Remark 2.8. Because of proposition 2.7 iv), one has that if a self-adjoint operator is invertible

(i.e. injective in this case), then also its inverse is self-adjoint.

Theorem 2.12. Given S,D(S)∈L (H) a symmetric operator, it is essentially self-adjoint iff one

has that S− z,D(S) and S− z̄,D(S) are boundedly invertible for some z ∈C∖ R. Moreover,

ran(S̄− z) = ran(S− z) and S,D(S) is closed ⇐⇒ ran(S− z) is closed.

If S ≥ a for some a∈R, z can also be chosen in the interval (−∞, a).

In particular, a positive operator is essentially self-adjoint iff it is boundedly invertible.

Proposition 2.13. Suppose A,D(A) ∈L (H1,H2) densely-defined and closable operator. Then

A∗Ā,D(A∗Ā)∈L (H1) is self-adjoint with D(A∗Ā) = {ψ ∈D(Ā) | Āψ ∈D(A∗)}.

Theorem 2.14. Let A,D(A)∈L (H) and U ∈B (H,H′) unitary. Setting A′,D(A′)∈ L (H′) as

D(A′) = {ψ ∈ H′ | U∗ψ ∈ D(A)} = UD(A), A′ψ = UAU∗ψ,

one has A,D(A) is (essentially) self-adjoint iff A′,D(A′) is (essentially) self-adjoint.
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Theorem 2.15 (Criterion for self-adjointness). Let S,D(S) ∈ L (H) be a symmetric operator.

Then, if there exists z ∈C∖ R s.t.

i) ker(S∗− z̄)= ker(S∗− z) = {0} we have S,D(S) is essentially self-adjoint;

ii) ran(S − z̄) = ran(S − z) =H we have S,D(S) is self-adjoint.

If S ≥ a for some a ∈ R, z can also be chosen in the interval (−∞, a).

The point i) of this theorem can be rewritten in light of proposition 2.7 iii) and remark 1.16 yielding

S,D(S) is essentially self-adjoint if ran(S − z̄) = ran(S − z) =H for some z ∈ C∖ R.

Corollary 2.16. Given S,D(S)∈L (H) symmetric, if there exists an orthonormal basis of eigen-

vectors of S, then S is essentially self-adjoint.

Definition 2.9 (Relative Boundedness). Given A,D(A), B,D(B)∈L (H) with D(A)⊆D(B),

we say that B,D(B) is A-bounded (or relatively bounded with respect to A,D(A)) if there exist

a, b > 0 s.t.

∥Bψ∥H ≤ a∥Aψ∥H+ b ∥ψ∥H , ∀ψ ∈ D(A).

The infimum of the values of a for which the previous upper bound holds is called A-bound of B.

Theorem 2.17 (Kato-Rellich). Let A,D(A)∈L (H) be (essentially) self-adjoint and B,D(B)∈
L (H) symmetric and A-bounded with A-bound a < 1. Then, the operator A+B,D(A) is (es-

sentially) self-adjoint. In this case, B,D(B) is called a Kato-small perturbation of A,D(A). In

case A,D(A) is bounded from below by γ ∈ R, then A+B,D(A) is bounded from below by

γ −max
{
a|γ|+ b, b

1−a

}
.

In order to obtain an observable from a symmetric operator S,D(S)∈L (H), we need to find an

extension of S,D(S) that is self-adjoint. In case S,D(S) is essentially self-adjoint, by definition

we know that S̄,D(S̄) is the unique self-adjoint extension one could find, otherwise there might

be several (possibly infinite) distinct self-adjoint extensions for S,D(S), or none at all. In the

following we provide some sufficient conditions for the existence of such self-adjoint extensions.

Definition 2.10 (Deficiency indices). Given a symmetric operator S,D(S)∈L (H), we define its

deficiency indices η±(S) as

η±(S) := dim ran(S ± i)⊥= dimker(S∗∓ i).

In particular, in case η+(S)= η−(S)= 0, owing to theorem 2.15 we know that S,D(S) is essen-

tially self-adjoint.

Theorem 2.18. Given a symmetric operator S,D(S)∈L (H), there exists at least one self-adjoint

extension for S,D(S) if its deficiency indices η±(S) are equal to each other.

Definition 2.11 (Conjugation Map). An anti-linear involution is said a conjugation if it is an

isometry. Namely, C : H−→H is a conjugation if
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• C(αψ + βφ) = ᾱCψ + β̄Cφ, α, β ∈ C, φ, ψ ∈ H;

• C2 = 1H; ←− this implies C is surjective: ∀ψ ∈H ∃ φ=Cψ ∈H : ψ=Cφ

• ⟨Cφ, Cψ⟩H = ⟨φ, ψ⟩H, ∀φ,ψ ∈ H.

Additionally, an operator A,D(A)∈L (H) is said C-real, with respect to the conjugation C if

• CD(A) ⊆ D(A); ←− actually C2=1H implies D(A)=C2D(A)⊆CD(A), thus D(A)=CD(A)

• ACψ = CAψ, ∀ψ ∈ D(A).

Theorem 2.19. Let S,D(S) ∈ L (H) be a symmetric operator which is C-real for some conjug-

ation C. Then, there exists at least one self-adjoint extension for S,D(S).

Theorem 2.20 (Friedrichs Extension). Let S,D(S) ∈ L (H) be symmetric and lower-bounded

with S ≥ γ ∈R. Then, there exists a unique self-adjoint extension which is lower bounded by γ.

From the physical point of view, axiom 2 associate the expectation of an observable in a pure state

with a specific quadratic form, that is a sesquilinear form evaluated with the same vector in both

its arguments. This suggests that one could rephrase the construction in terms of these objects

instead of self-adjoint operators. However, to this end, it is required to understand in which case

it is possible to associate a quadratic form to an observable. This shall be the content of the next

section.

2.2 QUADRATIC FORMS

Definition 2.12 (Quadratic Forms). Given H a complex Hilbert space, a map q : Q ⊆ H−→C is

called a quadratic form if

• q[αψ] = |α|2q[ψ], α ∈ C, ψ ∈ Q;

• q[ψ + φ] + q[ψ − φ] = 2q[ψ] + 2q[φ], ∀φ, ψ ∈ Q.

If q[ψ] ∈ R for all ψ ∈ Q and Q is dense in H, we say that q is hermitian.

Moreover, in case there exists γ ∈ R such that q[ψ] ≥ γ ∥ψ∥2H for all ψ ∈ Q, we say that the

hermitian quadratic form q is lower-bounded by γ.

Remark 2.9. Since a quadratic form q satisfies the parallelogram law, one can always associate

with it a sesquilinear form sq via the polarization identity. Additionally, such a sesquilinear form

must be symmetric in case q is hermitian. Finally, in case q is lower-bounded by γ ∈ R we can

define an inner product in Q given by

⟨φ, ψ⟩q = sq(φ, ψ) + (1− γ)⟨φ, ψ⟩H.

Consequently, this inner product induce the norm

∥·∥2q = q[· ] + (1− γ) ∥·∥2H .
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The completion of Q with respect to ∥·∥q shall be denoted by Hq.

Observe that ∥·∥q is stronger than ∥·∥H in Q.

Definition 2.13 (Form Domain). Given A,D(A)∈L (H) self-adjoint with A≥ γ ∈R we set

qA : Q(A) ⊆ H−→R as qA : ψ 7−→ ⟨
√
A−γ ψ,

√
A−γ ψ⟩H + γ ∥ψ∥2H

and we call Q(A) = D(
√
A−γ ) ⊇ D(A) the form domain of A.

Definition 2.14. A quadratic form q : Q ⊆ H−→C is bounded in case

sup
ψ ∈Q :
∥ψ∥H=1

|q[ψ]| < +∞.

Clearly, in case q is hermitian and bounded, one has that ∥·∥q is equivalent to ∥·∥H .

Definition 2.15 (Relative Form-Boundedness). Given A,D(A) ∈ L (H) a self-adjoint operator

with A ≥ γ ∈ R, a quadratic form q : Q ⊆ H −→ C, with Q(A) ⊆ Q is called relatively
form-bounded with respect to qA if there exist a, b > 0 such that

|q[ψ]| ≤ a qA[ψ] + (b− aγ) ∥ψ∥2H , ∀ψ ∈ Q(A).

The infimum of the values of a for which the previous upper bound holds is said relative bound.

Definition 2.16. A lower-bounded quadratic form q : Q ⊆ H−→R is closable if for every Cauchy

sequence {ψn}n∈N ⊂ Q with respect to ∥·∥q one has5

ψn −−−→
n→∞

0 in H =⇒ ∥ψn∥q −−−→n→∞
0.

In case a quadratic form q is closable, one has its closure q̄ : Hq−→R defined as

q̄[ψ] = lim
n→∞

q[ψn], ∀ {ψn}n∈N ⊂ Q : ∥ψn− ψm∥q−−−−−−→n,m→∞
0, ∥ψn− ψ∥H−−−−→n→∞

0.

Remark 2.10. We stress that closability ensures that Hq is an actual subspace of H. Indeed, con-

sider a Cauchy sequence {ϕn}n∈N⊂Q with respect to ∥·∥q (hence lim
n→∞

∥ϕn∥q exists) converging

to Φ ∈ Hq. We know that ϕn has limit in H, since ∥·∥q is stronger than ∥·∥H , e.g. ϕn −−−→
n→∞

ϕ,

therefore one has

∥Φ∥2Hq= lim
n→∞

∥ϕn∥2q = lim
n→∞

q[ϕn] + (1− γ) ∥ϕ∥2H .

Now, by way of contradiction suppose Hq ⊋ H. This means we can find another Cauchy sequence

{φn}n∈N⊂Q with respect to ∥·∥q such that

∥ϕ∥2Hq= lim
n→∞

∥φn∥2q = lim
n→∞

q[φn] + (1− γ) ∥ϕ∥2H .

Indeed, φn −−−→
n→∞

ϕ in H since ∥·∥Hq is stronger than ∥·∥H in H ∩ Hq. Therefore, it is clear that

∥φn− ϕn∥H−−−−→n→∞
0 and, because of closability, ∥φn− ϕn∥q−−−−→n→∞

0. This means the two Cauchy

sequences {φn}n∈N and {ϕn}n∈N are equivalent, namely they have the same limit Φ = ϕ ∈ H.We

have just shown that Hq ⊆ H, but this is a contradiction. Hence the hypothesis Hq ⊋ H is false.

5Since ∥·∥q is stronger than ∥·∥H in Q, one has ∥ψn∥q −−−−→n→∞
0 implies ∥ψn∥H −−−−→n→∞

0, but not the converse!
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Definition 2.17 (Closedness). A closable quadratic form q : Q ⊆ H −→ R is closed if Q is a

Banach space with respect to ∥·∥q or, equivalently, if Hq = Q.

By construction, given a closable q : Q ⊆ H−→R one has q̄ : Hq ⊆ H−→R is closed, since Hq is

complete with respect to ∥·∥q̄ .

Theorem 2.21. Given a self-adjoint operator A,D(A) ∈ L (H) such that A ≥ γ ∈ R and a

hermitian quadratic form q : Q⊆H−→R that is relatively form-bounded with respect to qA with

relative bound a < 1. Then, qA+ q : Q(A)⊆H−→R is closed and bounded from below.

Theorem 2.22 (KLMN- Kato, Lions, Lax, Milgram, Nelson). Let q : Q ⊆ H−→R be a lower-

bounded and closed quadratic form. Then, denoting by sq the sesquilinear form associated with

q, there exists a unique self-adjoint operator A,D(A)∈L (H) such that

D(A) = {ψ ∈ Q | ∃! Ψ ∈ H : sq(φ, ψ) = ⟨φ, Ψ⟩H, ∀φ ∈ Q},

Aψ = Ψ.

In particular, under the hypothesis of this theorem one has q[ψ] = ⟨ψ, Aψ⟩H for any ψ ∈ D(A)

(here Q ⊇ D(A) is the form domain of A). Additionally, it is also true the converse: any self-

adjoint and lower-bounded operator is uniquely associated with a closed and bounded from below

quadratic form.

Corollary 2.23. Let q be a quadratic form as in theorem 2.22. If q is also bounded, one obtains

that A,D(A) is bounded as well, with

sup
ψ ∈Q :
∥ψ∥H=1

|q[ψ]| = ∥A∥L(H) .

Remark 2.11. In particular, corollary 2.23 implies that for self-adjoint operators there holds

∥A∥L(H)= sup
ψ∈D(A) :
∥ψ∥H=1

|⟨ψ, Aψ⟩H|.

In conclusion, any observable can be described by a lower-bounded and closed quadratic form.

Proposition 2.24. Given An,D(An)∈L (H) a sequence of symmetric operators such that

∀ ϵ>0 ∃ N ∈N : ∀n≥N |qAn [ψ]− q[ψ]| < ϵ, ∀ψ ∈
⋂
n≥N

Q(An)

for some lower-bounded and closed quadratic form q : lim inf
n→∞

Q(An) ⊆ H −→ R, one has

An
w−−−→

n→∞
A, namely, the unique self-adjoint and lower-bounded operator associated with q.
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2.3 RESOLVENTS AND SPECTRA

Definition 2.18 (Resolvent Set). Let A,D(A)∈L (H) be a closed operator. The resolvent set is

ϱ(A) := {z ∈ C | A− z,D(A) is boundedly invertible}.

Moreover, we set the resolvent mapRA : ϱ(A)−→B (H) as

RA : z 7−→ (A− z)−1.

Remark 2.12. We stress that, because of remark 2.7, for any value z ∈ C s.t. A− z,D(A) is

invertible, one has (A− z)−1, ran(A− z)∈L (H) is closed. Hence, in order to have a bounded

inverse, it is enough to check that A− z is bijective, in light of theorem 2.4.

Proposition 2.25 (Resolvent Identities). Let A,D, B,D∈L (H) closed. Then,

i) RA(z)
∗ = RA∗(z̄), ∀ z ∈ ϱ(A) = {z ∈ C | z̄ ∈ ϱ(A∗)};

ii) RA(z)−RA(w) = (z − w)RA(z)RA(w) = (z − w)RA(w)RA(z), ∀ z, w ∈ ϱ(A);
iii) RA(z)−RB(z) = RA(z)(B−A)RB(z) = RB(z)(B−A)RA(z), ∀ z ∈ ϱ(A)∩ϱ(B).

Points ii) and iii) are called first and second resolvent identity, respectively.

Definition 2.19 (Spectrum). Let A,D(A)∈L (H) be closed. The spectrum is defined as

σ(A) = C∖ ϱ(A).

In particular, we decompose the spectrum as follows: σ(A) = σp(A) ∪ σc(A) ∪ σres(A), with

• σp(A) := {z ∈C | ∃ ψ ∈ D(A) : Aψ = zψ, ψ ̸= 0}; ←− A−z,D(A) is not injective

• σc(A) := {z ∈C | ker(A− z) = {0}, ran(A− z) ⊊ H is dense}; ←− inf
ψ∈D(A) :
∥ψ∥H=1

∥(A−z)ψ∥H=0

• σres(A) := {z ∈C | ker(A− z) = {0}, ran(A− z) ⊊ H not dense}.
We call them, respectively, point, continuous and residual spectra.

Additionally, in case dimker(A− z) = n ≥ 1, z ∈ σp(A) is called eigenvalue of A,D(A) with

multiplicity n (in case n = 1 it is a simple eigenvalue) and any non-null ψ ∈ D(A) satisfying

Aψ = zψ is an eigenfunction associated with z. In case ∥ψ∥H = 1, the unit ray |ψ⟩ is called an

eigenstate of A,D(A).

Remark 2.13. If A,D(A)∈L (H) is self-adjoint, we have σres(A)= ∅, owing to proposition 2.7.

Theorem 2.26 (Unitary Equivalence). Let A,D(A) ∈L (H) closed and U ∈B (H,H′) unitary.

Setting A′,D(A′)∈ L (H′) the closed operator given by

D(A′) = {ψ ∈ H′ | U∗ψ ∈ D(A)} = UD(A), A′ψ = UAU∗ψ,

one has σ(A) = σ(A′) and σp(A) = σp(A
′).

Definition 2.20. Given a self-adjoint operator A,D(A)∈L (H) we say that
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• σdisc(A) is the set of isolated eigenvalues with finite multiplicity;

• σess(A) = σ(A)∖ σdisc(A).

In other words, σess(A) is the union between the continuous spectrum, the set of accumulation

points in σp(A) and eigenvalues with infinite multiplicity. Moreover, σess(A) is a closed set.

Proposition 2.27. Let A,D(A)∈L (H) be closed. Then,

i) the resolvent set ϱ(A) is open in C (hence, σ(A) is closed);

ii) ∥RA(z)∥L(H) ≥
1

dist(z, σ(A))
, ∀ z ∈ ϱ(A);

iii) RA(z) =
∑
n∈N0

(z− z0)nRA(z0)
n+1, ∀ z, z0 ∈ ϱ(A) : ∥RA(z0)∥L(H) <

1
|z−z0| ;

iv) if A,D(A) is bounded, then {z ∈ C | ∥A∥L(H)< |z|} ⊂ ϱ(A) and for such values of z one

has the Neumann series

RA(z) = −
∑
j∈N0

Aj

zj+1
.

Proposition 2.28. Let A,D(A)∈L (H) be closed and invertible and B ∈ B (H) . Then,

• σ(A−1)∖{0}= (σ(A)∖{0})−1, Aψ = zψ ⇐⇒ A−1ψ = z−1ψ, z ∈ σp(A)∖{0};
• RBB∗(z) = 1

z
(BRB∗B(z)B

∗− 1), RB∗B(z) =
1
z
(B∗RBB∗(z)B − 1) and

σ(BB∗)∖ {0} = σ(B∗B)∖ {0}.

Definition 2.21 (Compatible Observables). We say two bounded operators A,B ∈ B (H) com-
mute if AB − BA =: [A,B] = 0. In case A,D(A) and B,D(B) are unbounded, we say they

commute if there exist some z1 ∈ ϱ(A) and z2 ∈ ϱ(B) s.t.

[RA(z1),RB(z2)] = [RA∗(z̄1),RB(z2)] = [RA(z1),RB∗(z̄2)] = 0.

Additionally, in case both A,D(A) and B,D(B) are self-adjoint, they are said compatible.

Definition 2.22 (Singular Weyl Sequence). Given A,D(A)∈L (H) self-adjoint operator, we say

{ψn}n∈N ⊂ D(A) with ∥ψn∥H = 1 for all n∈N is a Weyl sequence for A,D(A) if

∥Aψn − zψn∥H−−−−→n→∞
0, for some z ∈ C.

It is called a singular Weyl sequence if additionally there holds ψn−−−⇀
n→∞

0.

Proposition 2.29. If there exists a Weyl sequence for A,D(A)∈L (H), self-adjoint operator, with

parameter z ∈C, then one has z ∈ σ(A).
Moreover, if such a Weyl sequence is singular, then z ∈ σess(A).

Proposition 2.30. Suppose A,D(A) ∈ L (H) is closed with ϱ(A) ̸= ∅ and B,D(B) ∈ L (H)

closable. Then the following are equivalent

i) B,D(B) is A-bounded;

ii) D(A) ⊆ D(B);

iii) BRA(z) is bounded for one (and hence for all) z ∈ ϱ(A).
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Moreover, if B,D(B) is A-bounded, its A-bound is not larger than inf
z∈ϱ(A)

∥BRA(z)∥H .

Definition 2.23 (Relative Compactness). LetA,D(A)∈L (H) be a closed operator with resolvent

set ϱ(A) ̸= ∅. An operator B,D(B)∈L (H) is called relatively A-compact if

• D(B)⊇ D(A);

• BRA(z)∈B (H) is compact for some (and hence for all) z ∈ ϱ(A).

Clearly, a compact operator is relatively compact with respect to any other operator.

Proposition 2.31. Let A,D(A)∈L (H) be self-adjoint and K,D(K)∈L (H) relatively compact

with respect to A,D(A). Then, K,D(K) is A-bounded with A-bound equal to zero6.

Proposition 2.32. Let A,D(A) ∈ L (H) be self-adjoint and B,D(B) ∈ L (H) symmetric and

A-bounded with A-bound less than 1. If K,D(K) ∈L (H) is relatively compact with respect to

A,D(A), then it is also relatively compact with respect to A+B,D(A)∈L (H) .

Theorem 2.33 (Weyl). Let A,D(A), B,D(B)∈L (H) be self-adjoint operators. If

RA(z)−RB(z)∈B (H) is compact for some z ∈ ϱ(A) ∩ ϱ(B),

Then, σess(A) = σess(B).

Remark 2.14. Let K,D(K)∈L (H) be a self-adjoint operator which is relatively compact with

respect to A,D(A)∈L (H) . Then, because of the second resolvent identity one has

RA+K(z)−RA(z) ∈ B (H) is compact for all z ∈ ϱ(A+K) ∩ ϱ(A).

Thus, this is a particular case for which the Weyl’s theorem applies. In other words, the essential

spectrum of a self-adjoint operator is invariant under relatively compact perturbations.

Corollary 2.34. Let S,D(S)∈L (H) a symmetric operator with finite deficiency indices equal to

each other. Then, all its self-adjoint extensions have the same essential spectrum.

Proposition 2.35. Let P ∈B (H) be an orthogonal projection. Then P is positive semi-definite

and, if P ̸= 1H and P ̸= 0, one has σ(P ) = σp(P ) = {0, 1}.

Proposition 2.36. Let U ∈B (H) be unitary. Then, σ(U)⊆ {z ∈ C | |z|= 1} and eigenfunctions

corresponding to distinct eigenvalues are orthogonal.

Proposition 2.37 (Riesz-Schauder). Let K ∈ B (H) be compact. Then, σ(K)∖ {0} = σdisc(K),

such eigenvalues are either finite or countable with {0} as accumulation point, i.e. σess(K) ⊆ {0}
(it might be empty).

6This does not imply that K,D(K) is bounded! It could happen that ∥Kψ∥H ≤ ϵ ∥Aψ∥H + 1
ϵ ∥ψ∥H, ∀ ϵ > 0.
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Proposition 2.38. Given a real-valued µ-measurable function f : X−→R, the multiplication op-

erator7 Mf ,D(Mf )∈L (L2(X, dµ)) is self-adjoint (and bounded in case f is essentially bounded)

and

σ(Mf ) =
{
λ∈ R

∣∣ µ({x ∈X : |f(x)− λ| < ϵ}
)
> 0, ∀ ϵ > 0

}
.

Additionally, if µ≪ ν, with ν the Lebesgue measure, one has σ(Mf ) = σess(Mf ).

Theorem 2.39. Let A,D(A)∈L (H) be symmetric. Then,

i) all eigenvalues are real and the corresponding eigenfunctions are orthogonal;

ii) A,D(A) is self-adjoint iff σ(A) ⊆ R;
iii) A,D(A) is self-adjoint and A≥ γ ∈R ⇐⇒ σ(A) ⊆ [γ, +∞);

iv) if A,D(A) is self-adjoint, ∥RA(z)∥L(H)=
1

dist(z, σ(A))
, ∀ z ∈ ϱ(A). Moreover,

inf σ(A) = inf
ψ∈D(A) :
∥ψ∥H=1

⟨ψ, Aψ⟩H, supσ(A) = sup
ψ∈D(A) :
∥ψ∥H=1

⟨ψ, Aψ⟩H.

Remark 2.15. In case an eigenvalue λ0 ∈ R is not simple, two distinct corresponding eigen-

functions does not have to be orthogonal to each other, however, exploiting the Gram-Schmidt

technique, one can always provide an orthonormal set of eigenfunctions spanning ker(A− λ0).

FURTHER OPERATOR TOPOLOGIES

Definition 2.24 (Norm- and Strong-Resolvent Convergence). Given a sequence of self-adjoint

operators An,D(An)∈L (H) and A,D(A)∈L (H) self-adjoint we say

• An converges to A in the norm resolvent sense ifRAn(z) −−−→
n→∞

RA(z) for one z ∈ Γ,

• An converges to A in the strong resolvent sense ifRAn(z)
s−−−→

n→∞
RA(z) for one z ∈ Γ,

where Γ := C∖
[
σ(A) ∪

⋃
n∈N

σ(An)
]
.

Remark 2.16. We stress that uniform convergence implies norm resolvent convergence whereas

strong convergence implies strong resolvent convergence.

Moreover, given z ∈ Γ∖R such thatRAn(z)
w−−−→

n→∞
RA(z), one also hasRAn(z)

s−−−→
n→∞

RA(z).

In conclusion, if a sequence of operators converges in norm (or strong) resolvent sense for one

z0 ∈ Γ, than it converges for all z ∈ Γ.

Proposition 2.40. Suppose An,D(An) ∈ L (H) self-adjoint operators converge in the strong

resolvent sense to A,D(A)∈L (H) . Then,

e−itAn
s−−−→

n→∞
eitA, t ∈ R.

Proposition 2.41. Let An,D ∈ L (H) a sequence of self-adjoint operators and A,D ∈ L (H)

self-adjoint. Then, An converges to A in the norm resolvent sense if there exist two sequences of

positive numbers {an}n∈N and {bn}n∈N converging to zero such that

∥(A−An)ψ∥H ≤ an ∥ψ∥H + bn ∥Aψ∥H , ∀ψ ∈ D.

7(Mf ψ)(x) = f(x)ψ(x), ∀ψ ∈ D(Mf ) =
{
ψ ∈ L2(X, dµ)

∣∣ f ψ ∈ L2(X, dµ)
}
.
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Theorem 2.42. Let An,D(An) ∈ L (H) be a sequence of self-adjoint operators. If An,D(An)

converges to a self-adjoint operator A,D(A)∈L (H) in the strong resolvent sense, one has

σ(A) ⊆ lim
n→∞

σ(An),

where equality holds in case An,D(An) converges to A,D(A) in the norm resolvent sense.

2.4 SPECTRAL THEOREM

In this section, our goal is to give a meaning to f(A),D(f(A)) for some function f and an

unbounded self-adjoint operatorA,D(A) ∈ L (H), so that, provided a time-independent Hamilto-

nianH,D(H)∈L (H) describing the energy of a system in the initial pure state |ψ0⟩, ψ0 ∈H one

always has the unique solution |ψt⟩ = e−iHt|ψ0⟩ associated with the time evolution (ψt solves the

Schrödinger equation if ψ0 is in the dense subspace D(H), which is invariant under the action of

the dynamics, i.e. e−iHtD(H) =D(H)).

Definition 2.25 (Projection-valued Measure). Let B denote the σ-algebra of Borel sets in R. A

projection-valued measure is a map

P : B−→B (H) , P : Ω 7−→ P (Ω), orthogonal projection

satisfying

• P (R) = 1H;

• given {Ωn}n∈N ⊂ B pairwise disjoint, one has

n∑
k=1

P (Ωk)
s−−−→

n→∞
P (Ω), with Ω =

⋃
n∈N

Ωn∈B. ←− strong σ-additivity

Remark 2.17. Instead of strong convergence one could just require weak convergence, since a

sequence of projections weakly converging to a projection, converges also strongly

Pn
w−−−→

n→∞
P =⇒ ∥Pnψ − Pψ∥2H = ⟨ψ, Pnψ⟩H + ⟨ψ, Pψ⟩H − 2Re⟨Pψ, Pnψ⟩H −−−→

n→∞
0.

Proposition 2.43. A projection-valued measure satisfies the following properties

i) P (∅) = 0;

ii) P (R∖ Ω) = 1H − P (Ω), ∀Ω ∈ B;

iii) P (Ω1∪ Ω2) + P (Ω1∩ Ω2) = P (Ω1) + P (Ω2), ∀Ω1,Ω2 ∈ B;

iv) P (Ω1)P (Ω2) = P (Ω2)P (Ω1) = P (Ω1∩ Ω2), ∀Ω1,Ω2 ∈ B;

v) Ω1,Ω2 ∈ B : Ω1 ⊆ Ω2 =⇒ P (Ω2)− P (Ω1) = P (Ω2∖ Ω1) ≥ 0. ←− monotonicity

Remark 2.18. All maps µψ : B −→ R+ given by µψ(·) := ⟨ψ, P (·)ψ⟩H = ∥P (·)ψ∥2H define a

finite regular (see proposition 1.1) Borel measure on R for a given ψ ∈ H with µψ(R) = ∥ψ∥2H .
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Definition 2.26 (Spectral Family - Resolution of the Identity). Given a projection-valued measure

P , we call the map EP : R −→B (H) defined by EP : λ 7−→ P ((−∞, λ ]) a resolution of the

identity and each operator EP (λ) a spectral projection.

Proposition 2.44. A resolution of the identity fulfils

i) EP (λ) is an orthogonal projection for each λ ∈ R;

ii) EP (λ1) ≤ EP (λ2) for λ1 ≤ λ2;

iii) EP (λ+ ϵ)
s−−−→

ϵ→ 0+
EP (λ), λ ∈ R; ←− strong right-continuity

iv) EP (λ)
s−−−−−→

λ→+∞
1H, EP (λ)

s−−−−−→
λ→−∞

0.

Remark 2.19. We stress that the regular Borel measure µψ(·) = ⟨ψ, P (·)ψ⟩H can be thought of

as the Lebesgue-Stieltjes measure associated with the non-decreasing, right-continuous function

λ 7−→ ⟨ψ, EP (λ)ψ⟩H, since µψ
(
(a, b ]

)
= ⟨ψ, P

(
(−∞, b ]

)
ψ⟩H − ⟨ψ, P

(
(−∞, a ]

)
ψ⟩H.

µψ is the spectral measure associated with P .

Definition 2.27 (Functional Calculus - Simple functions). Given a simple function s : R−→ C
and a projection-valued measure P , we define its functional calculus as the map P satisfying

P (s) ≡
∫
R
dEP (λ) s(λ) :=

n∑
k=1

αkP (Ωk), s : x 7−→
n∑
k=1

αk1Ωk(x), Ωk ∈ B.

In particular, for any Ω ∈ B we have P (1Ω) = P (Ω).

Remark 2.20. Given a projection-valued measure P, there holds

⟨ψ, P (s)ψ⟩H =
n∑
k=1

αk ∥P (Ωk)ψ∥2H =
n∑
k=1

αk µψ(Ωk) =

∫
R
dµψ(λ) s(λ),

∥P (s)ψ∥2H =
n∑
k=1

|αk|2 ∥P (Ωk)ψ∥2H =

∫
R
dµψ(λ) |s(λ)|2. ←− {Ωk}nk=1 are pairwise disjoint

Equipping the vector space of simple functions with the sup norm, we infer that the linear map P

is continuous between the normed space of simple functions and the bounded operators. Indeed,

∥P∥ = sup
∥s∥∞=1

∥P (s)∥L(H) = sup
∥s∥∞=1

sup
∥ψ∥H=1

∥P (s)ψ∥H = 1.

Since the normed space of simple functions is dense in the Banach space of complex-valued,

bounded Borel functions, denoted by B(R,C), owing to theorem 1.30 one has the following.

Definition 2.28 (Functional Calculus - Bounded Borel functions). Given a projection-valued

measure P and its functional calculus for simple functions, we define P : B(R,C) −→ B (H)

as its unique extension to a bounded linear operator in L (B(R,C),B (H)) with norm 1.
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There still holds for any f ∈ B(R,C)

⟨ψ, P (f)ψ⟩H =

∫
R
dµψ(λ) f(λ),

∥P (f)ψ∥2H =

∫
R
dµψ(λ) |f(λ)|2.

Theorem 2.45. Given P a projection-valued measure, one has its functional calculus for complex-

valued, bounded Borel functions P (f) =
∫
R
dEP (λ) f(λ) satisfying

P (f)∗ = P (f̄), ∀ f ∈ B(R,C);

⟨P (g)ψ, P (f)ψ⟩H =

∫
R
dµψ(λ) g(λ)f(λ), ∀ g, f ∈ B(R,C).

Additionally, if fn −−−→
n→∞

f pointwise and {∥fn∥∞}n∈N is a bounded sequence, one has

P (fn)
s−−−→

n→∞
P (f).

Remark 2.21. This theorem highlights that the functional calculus for bounded Borel functions

of a projection-valued measure is a ⋆-homomorphism between the C⋆-algebra of B(R,C) with

involution given by the complex conjugation and the C⋆-algebra (B (H) , ∗). As a consequence,

one has for any Ω ∈ B

µP (f)ψ(Ω) = ⟨P (f)ψ, P (Ω)P (f)ψ⟩H =

∫
Ω

dµψ(λ) |f(λ)|2 =⇒ dµP (f)ψ = |f |2dµψ.

Additionally, the functional calculus P maps non-negative functions in non-negative operators.

Next we want to define the functional calculus of a projection-valued measure for unbounded

Borel functions. Since we expect the resulting operator to be unbounded, we need to set a domain

of definition

D(P (f)) =
{
ψ ∈ H

∣∣ f ∈ L2(R, dµψ)
}
.

This is a linear subspace of H since, given ψ, φ ∈ D(P (f)) one also has αψ+βφ∈D(P (f)) for

all α, β ∈ C since

µαψ+βφ(Ω) = ∥P (Ω)(αψ + βφ)∥2H ≤ 2|α|2 ∥P (Ω)ψ∥2H + 2|β|2 ∥P (Ω)φ∥2H
= 2|α|2µψ(Ω) + 2|β|2µφ(Ω),

hence f ∈L2(R, dµψ)∩L2(R, dµφ) implies f ∈L2(R, dµαψ+βφ). Notice that in case f is bounded

D(P (f)) = H since µψ is finite. Furthermore, D(P (f)) is also dense in H.

Indeed, let ψ ∈ H and Ωn = {λ ∈ R | |f(λ)| ≤ n} ∈B. Then, ψn := P (Ωn)ψ ∈D(P (f)) for all

n∈N since dµψn = 1Ωn dµψ, hence ∥f∥L2(R, dµψn )
≤ n ∥ψ∥H . Moreover, one also has

∥ψ− ψn∥2H = ∥(1H−P (Ωn))ψ∥2H = ∥P (R∖ Ωn)ψ∥2H = µψ(R∖ Ωn),

µψ(R∖ Ωn)−−−→
n→∞

µψ

( ⋂
k∈N

R∖ Ωk

)
= µψ

(
R∖

⋃
k∈N

Ωk

)
= 0.
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Finally, for any Borel function f , set fn = 1Ωn f ∈ B(R,C) which defines a Cauchy sequence

in L2(R, dµψ) for any given ψ ∈ D(P (f)). Therefore, the sequence of vectors {P (fn)ψ}n∈N is

Cauchy in H, since

∥(P (fn)− P (fm))ψ∥2H = ∥P (fn− fm)ψ∥2H =

∫
R
dµψ(λ) |fn(λ)− fm(λ)|2 −−−−−→

n,m→∞
0.

Hence lim
n→∞

P (fn)ψ exists in H by completeness.

Definition 2.29 (Functional Calculus). Given a projection-valued measure P, for any f complex-

valued Borel function we define its functional calculus P (f),D(P (f)) as the strong limit of

P (fn), provided {fn}n∈N ⊂B(R,C) s.t. ∥fn−f∥L2(R, dµψ)−−−−→n→∞
0 for all ψ ∈ D(P (f)).

Theorem 2.46. For every Borel function f, the densely defined linear operator

P (f) =

∫
R
dEP (λ) f(λ), D(P (f)) =

{
ψ ∈ H

∣∣ f ∈ L2(R, dµψ)
}

is normal (hence closed) and satisfies for all ψ ∈ D(P (f))

∥P (f)ψ∥2H =

∫
R
dµψ(λ) |f(λ)|2, ⟨ψ, P (f)ψ⟩H =

∫
R
dµψ(λ) f(λ).

Additionally, for any f, g Borel functions and α, β ∈ C
i) P (f)∗ = P (f̄);

ii) αP (f) + βP (g) ⊆ P (αf + βg), D(αP (f) + βP (g)) = D(P (|f |+ |g|));
iii) P (f)P (g) ⊆ P (f g), D(P (f)P (g)) = D(P (fg)) ∩D(P (g)).

Notice that in case f is real-valued, P (f),D(P (f))∈L (H) is a self-adjoint operator.

Now, let FA;ψ(z) = ⟨ψ, RA(z)ψ⟩H for a given self-adjoint operator A,D(A) ∈ L (H) . This

function is holomorphic for z ∈ ϱ(A) and satisfies

FA;ψ(z̄) = FA;ψ(z), |FA;ψ(z)| ≤
∥ψ∥2H
|Imz|

and ImFA;ψ(z) = Imz ∥RA(z)ψ∥2H .

In particular, FA;ψ is a Herglotz–Nevanlinna function8.

Lemma 2.47. Any Herglotz–Nevanlinna function F such that |F (z)|< M
|Im z| for some M > 0 can

be written uniquely as the Borel transform of a finite Borel measure µF (with µF (R) < M ) given

by the Stieltjes inversion formula, namely

F (z) =

∫
R
dµF (λ)

1

λ− z
, ←− Borel transform

µF
(
(a, b ]

)
= lim

δ→ 0+
lim
ϵ→ 0+

1

π

∫ b+δ

a+δ

dλ ImF (λ+ iϵ), µF ({λ}) = lim
ϵ→ 0+

ϵ ImF (λ+ iϵ).

According to this lemma, for each ψ ∈ H there exists a unique finite Borel measure µA;ψ s.t.

⟨ψ, RA(z)ψ⟩H =

∫
R
dµA;ψ(λ)

1

λ− z
.

8Such functions are holomorphic on the open upper half-plane with non-negative imaginary part.
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Lemma 2.48. Given A,D(A)∈L (H) self-adjoint and Ω ∈ B, the quantity

µA;ψ(Ω) ≡
∫
R
dµA;ψ(λ) 1Ω(λ) =: ⟨ψ, PA(Ω)ψ⟩H

is a spectral measure, with projection-valued measure PA.

Theorem 2.49 (Spectral theorem). For any self-adjoint operator A,D(A) ∈ L (H) there exists a

unique projection-valued measure PA such that

qA[ψ] =

∫
R
dµA;ψ(λ) λ, A =

∫
R
dEPA(λ) λ

where the form domain of A is Q(A) = D(|A|1/2) =
{
ψ ∈ H

∣∣∣ ∫
R
dµA;ψ(λ) |λ| < +∞

}
and the

domain can be rewritten as D(A) =
{
ψ ∈ H

∣∣∣ ∫
R
dµA;ψ(λ) λ

2 < +∞
}
.

Proposition 2.50. Let A,D(A)∈L (H) be self-adjoint. Then, ran(PA({λ0})) = ker(A− λ0).

Theorem 2.51. The spectrum of A,D(A)∈L (H) self-adjoint is given by

σ(A) = {λ ∈ R | PA
(
(λ− ϵ, λ+ ϵ)

)
̸= 0, ∀ ϵ > 0}.

Additionally,

σdisc(A) = {λ ∈ σp(A) | ∃ ϵ > 0 : dim ran(PA(λ− ϵ, λ+ ϵ)) < +∞},

σess(A) = {λ ∈ R | dim ran(PA(λ− ϵ, λ+ ϵ)) = +∞, ∀ ϵ > 0}.

In particular, PA
(
(a, b)

)
= 0 if and only if (a, b) ⊆ ϱ(A).

Corollary 2.52. We have PA(σ(A)) = 1H and PA(R ∩ ϱ(A)) = 0.

Remark 2.22. We stress that the spectral theorem implies PA(λ 7−→ λ) = A. If we now assume

A∈B (H) , then we know σ(A) is bounded (i.e. compact), D(PA(λ 7−→ λ)) = H and

A2 = PA(λ 7−→ λ)PA(λ 7−→ λ) = PA(λ 7−→ λ2),

since PA is a ⋆-homomorphism (indeed f |σ(A) is bounded even if f : λ 7−→ λ is not). Hence,

for any polynomial p we know that PA(p) = p(A). By the Stone–Weierstrass theorem, the set of

polynomials is dense (according to the sup-norm) in the space of real-valued continuous functions,

so that for any continuous function f we can define the bounded, self-adjoint operator f(A) as

⟨ψ, f(A)ψ⟩H = ⟨ψ, PA(f)ψ⟩H =

∫
σ(A)

dµA;ψ(λ) f(λ), ∀ψ ∈ H.

Guided by these motivations for any A,D(A)∈L (H) and f complex-valued Borel function, we

define the operator f(A) := PA(f), with D(f(A)) = {ψ ∈ H | f ∈ L2(σ(A), dµA;ψ)}.

Page 40



Foundations of Quantum Mechanics

Theorem 2.53 (Spectral Mapping - Bounded Borel functions). Let f : R −→ C be a bounded

Borel function and A,D(A)∈L (H) a self-adjoint operator. Then, f(A) ∈ B (H) and

σ(f(A)) = f(σ(A)), ∥f(A)∥L(H)= ∥f∥L∞(σ(A)) .

Proposition 2.54. If two self-adjoint operators A,D(A) ∈ L (H) and B,D(B) ∈ L (H) are

compatible then [f(A), g(B)] = 0 for any f, g bounded Borel functions.

Additionally, the following are equivalent

i) A,D(A) and B,D(B) are compatible;

ii) [e−itA, e−itB] = 0 for all t ∈ R;

iii) A,D(A) commutes with e−itB for all t∈R;

iv) B,D(B) commutes with e−itA for all t∈R.

Assuming B bounded (not necessarily self-adjoint), it commutes with A,D(A) iff BA ⊆ AB. In

this case one has Bf(A) ⊆ f(A)B for any f Borel function, where equality holds in case f is

bounded.

Proposition 2.55. Let A,D(A) and B,D(B) be self-adjoint operators in L (H) with non-empty

point spectrum. A and B are compatible if and only if they have a common orthonormal basis of

eigenfunctions.

We would like to extend theorem 2.53 for unbounded Borel functions. To this end, let us consider

Hψ := {P (g)ψ | g ∈ L2(R, dµψ)} ⊆ H

which is a closed subspace since L2(R, dµψ) is complete and ψn = P (gn)ψ converges in H if and

only if gn converges in L2(R, dµψ).

Lemma 2.56. Given Πψ ∈ B (H) the projection onto Hψ, one has

ΠψP (f) ⊆ P (f)Πψ, ΠψP (f)Πψ = P (f)Πψ.

Remark 2.23. Observe that ΠψD(P (f)) = D(P (f)) ∩ Hψ and

D(P (f)) ∩ Hψ = {P (g)ψ ∈ H | g ∈ L2(R, dµψ), f ∈ L2(R, dµP (g)ψ)}

= {P (g)ψ ∈ H | g ∈ L2(R, dµψ), f ∈ L2(R, |g|2dµψ)}

= {P (g)ψ ∈ H | g ∈ L2(R, dµψ), f g ∈ L2(R, dµψ)}.

This means that for any φ ∈ΠψD(P (f)) one has a gφ ∈ L2(R, dµψ) such that gφf ∈ L2(R, dµψ)
and

P (f)φ = P (f)P (gφ)ψ = P (fgφ)ψ ∈ Hψ.

We introduce the unitary operator

Uψ : Hψ−→L2(R, dµψ)

P (g)ψ 7−→ g.
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One has UψΠψD(P (f)) = {g ∈ L2(R, dµψ) | fg ∈ L2(R, dµψ)} = D(Mf ), thus

UψP (f)Πψ =Mf Uψ,

where Mf ,D(Mf )∈L (L2(R, dµψ)) is the multiplication operator by the function f.

In case Hψ = H one has that the operator P (f),D(P (f)) is unitary equivalent to the multiplication

operator by f. In such a case ψ is said cyclic. Otherwise, a set {ψn}n∈N ⊂ H is called a spectral
basis if H =

⊕
n∈N

Hψn , where Hψn ⊥ Hψm for all n ̸= m.

Theorem 2.57. For every projection-valued measure P, in an infinite dimensional, separable

Hilbert space there exists a spectral basis {ψn}n∈N ⊂ H (at most countable). Moreover, one

has the unitary operator

U : H−→
⊕
n∈N

L2(R, dµψn)

UΠψn= Uψn , UP (f) =MfU,

UD(P (f)) = D(Mf ) =
{
{gn}n∈N ∈

⊕
n∈N

L2(R, dµψn)
∣∣∣ {fgn}n∈N ∈

⊕
n∈N

L2(R, dµψn)
}
.

Definition 2.30 (Maximal Spectral Measure). Given a spectral basis {ψn}n∈N ⊂ H, a spectral

measure µψ such that µψn ≪ µψ for all n ∈ N is called a maximal spectral measure and ψ ∈ H is

the corresponding maximal spectral vector.

Lemma 2.58. For every self-adjoint operator there exists a maximal spectral measure.

Theorem 2.59 (Spectral Mapping). Let f : R−→C be a Borel function and A,D(A)∈L (H) a

self-adjoint operator. Then, denoting by µ its maximal spectral measure

σ(f(A)) =
{
z ∈ C

∣∣ µ(f−1(Bϵ(z))
)
> 0, ∀ ϵ > 0

}
, Bϵ(z) = {w ∈ C | |w − z| < ϵ}.

In particular,

σ(f(A)) ⊆ f(σ(A)),

where equality holds if f is continuous and the closure can be dropped in case, in addition, σ(A)

is bounded or |f(λ)| −−−−→
λ→+∞

+∞.

Definition 2.31. Given a spectral measure µψ : B−→ [0, +∞] associated with some projection-

valued measure on H, we define (see theorem 1.18)

• Hac = {ψ ∈ H | µψ is absolutely continuous};
• Hsc = {ψ ∈ H | µψ is singularly continuous};
• Hpp = {ψ ∈ H | µψ is pure point}.

Proposition 2.60. One has H = Hac ⊕ Hsc ⊕ Hpp.

Definition 2.32 (Spectral Types). Given a self-adjoint operator A,D(A)∈L (H) and a maximal

spectral measure µψ (with ψ maximal spectral vector) we set

Page 42



Foundations of Quantum Mechanics

• the absolutely continuous spectrum σac(A) = σ(A|Hac);

• the singularly continuous spectrum σsc(A) = σ(A|Hsc);

• the pure point spectrum σpp(A) = σ(A|Hpp).

In particular, proposition 2.60 implies that two unitarily equivalent self-adjoint operators preserve

the classification of the spectrum given in definition 2.32.

Remark 2.24. We stress that σpp(A) = σp(A) (it is the set of eigenvalues together with possible

accumulation points) and σc(A) = σac(A) ∪ σsc(A) ∪ (σpp(A) ∖ σp(A)). Additionally, the es-

sential spectrum is the union of the absolutely continuous spectrum, the singularly continuous

spectrum and the elements in the pure point spectrum which are either isolated eigenvalues of

infinite multiplicity or accumulation points. In summary,

σdisc(A) ⊆ σp(A) ⊆ σpp(A), σac(A) ∪ σsc(A) ⊆ σc(A) ⊆ σess(A).

Theorem 2.61 (RAGE theorem). Let A,D(A)∈L (H) be self-adjoint and {Kn}n∈N ⊂ L (H) a

sequence of relatively compact operators with respect to A,D(A) with Kn
s−−−→

n→∞
1H. Then,

lim
n→∞

lim
T →+∞

1

T

∫ T

0

dt
∥∥Kne

−itAψ
∥∥
H
= 0 ⇐⇒ ψ ∈ Hac ⊕ Hsc,

lim
n→∞

sup
t≥0

∥∥(1H −Kn)e
−itAψ

∥∥
H
= 0 ⇐⇒ ψ ∈ Hpp.

Remark 2.25. This theorem gives a qualitative characterization of a Hilbert space H in terms of

the maximal spectral measure of a self-adjoint operator acting on H. In particular, considering

the Hamiltonian of a quantum systemH,D(H)∈L (H), the subspace Hpp is composed of bound
states, that’s to say, vectors whose evolution is arbitrarily improbable outside a compact (think of

H as L2(Rd) andKn as the compact operators multiplying by 1Bn(0)). Conversely, for a scattering
state one has an arbitrarily small (time-average) probability of staying in a compact region.

Theorem 2.62 (Global Probabilistic Interpretation). Given a complex and separable Hilbert space

H, for any self-adjoint operator A,D(A)∈L (H) , there exists a measure space (X,Σ, ν), with ν

σ-finite, a unitary operator U : H−→L2(X, dν) and a real-valued, ν-measurable function h s.t.

UD(A) = {ψ ∈ L2(X, dν) | hψ ∈ L2(X, dν)}

UAU∗ψ = hψ, ∀ψ ∈ UD(A).

Remark 2.26. According to this theorem and the 2nd postulate, the expectation value of an ob-

servable a represented by the self-adjoint operator A,D(A)∈L (H) is

Eφ[a ] = ⟨φ, Aφ⟩H =

∫
X

dν(x) h(x) |ψ(x)|2, Uφ = ψ,

Pφ(a ∈ Ω) = ⟨φ, 1Ω(A)φ⟩H =

∫
X

dν(x) 1h−1(Ω)(x)|ψ(x)|2 =
∫
h−1(Ω)

dν(x) |ψ(x)|2, Ω ∈ B.
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This means that observables can be thought of as real random variables on the probability space

(X,Σ, |ψ|2dν) (notice ∥φ∥H = 1 implies ∥ψ∥L2(X, dν)= 1). This is the reason why sometimes it is

convenient to treat the observables as time dependent rather than the states (i.e. the probability

spaces). For instance, assuming D(H) ⊆ D(A) (then e−itHD(H) ⊆ D(A)) one can write

A(t) := eitHAe−itH, ⟨ψt, Aψt⟩H = ⟨ψ0, A(t)ψ0⟩H, ∀ψ0 ∈ D(H)

for A,D(A)∈L (H) self-adjoint. In physics literature this is known as the Heisenberg picture.

One can extend the same (global) probabilistic interpretation for a set of compatible observables.

Theorem 2.63 (Joint Probabilistic Representation). Given a complex and separable Hilbert space

H, for any set of compatible self-adjoint operators {Ai,D(Ai)}Ni=1⊂L (H) , there exist a measure

space (X,Σ, ν), with ν σ-finite, a unitary operator U : H−→L2(X, dν) and a set of real-valued,

ν-measurable functions {hi}Ni=1 s.t.

UD(Ai) = {ψ ∈ L2(X, dν) | hiψ ∈ L2(X, dν)}

(UAiU
∗ψ)(x) = hi(x)ψ(x), ∀ψ ∈ UD(Ai).
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In this chapter we introduce some relevant observables associated with a quantum system

in a pure state. First, we consider the cyclic group Z⧸2Z =
(
{0, 1}, + mod 2

)
. A unitary rep-

resentation of this group in L2(Rd) can be given by ρa, with a ∈ {0, 1} where ρ0 = 1 while

ρ1 is the parity operator Π : ψ(x) 7−→ ψ(−x). Such unitary operator satisfies, by construc-

tion, Π2 = 1, hence it is self-adjoint (it is symmetric and everywhere-defined). In particular,

σ(Π) = σess(Π) = {−1,+1}.
Next, we take into account the group of translations given by (Rd,+) and two associated unitary

representations in L2(Rd)

ρ : Rd−→B
(
L2(Rd)

)
, (ρvψ)(x) = ψ(x− v),

ρ̃ : Rd−→B
(
L2(Rd)

)
, (ρ̃vψ)(x) = e−iv ·xψ(x).

In both cases, we can write these representations as follows

ρv =
d∏
i=1

ρviei , ρ̃v =
d∏
i=1

ρ̃viei , vi = v · ei,

where {ei}di=1 is the canonical basis of Rd. One can check that both ρviei and ρ̃viei are strongly-

continuous, one-parameter unitary groups for vi ∈ R. Let’s therefore compute their generators

Pi = i lim
vi→ 0

ρviei− 1

vi
ψ(x) = −i ∂

∂xi
ψ(x),

Qi = i lim
vi→ 0

ρ̃viei− 1

vi
ψ(x) = xi ψ(x).

The operator P = −i∇ is known as the momentum operator and Q is the position operator
(multiplying by the function x 7−→ x). By the Stone’s theorem we have for all v ∈ Rd

ρv = e−iv ·P , D(P ) = H1(Rd),

ρ̃v = e−iv ·Q, D(Q) = {ψ ∈ L2(Rd) | xψ(x) ∈ L2(Rd, dx)}.

One has σ(Qi) = σac(Qi) = R and σ(Pi) = σac(Pi) = R. Additionally, for any ψ∈L2(Rd) such

that ψ ∈ D(PkQj) ∩D(QjPk) there hold the so called Weyl relations

[Qj, Pk]ψ(x) = i δjkψ(x).
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Theorem 3.1 (Heisenberg Uncertainty Principle). Consider two symmetric operators A,D(A)

and B,D(B) in L (H) . Then, for any ψ ∈ D(AB) ∩D(BA) one has

∥(A− ⟨A⟩ψ)ψ∥H ∥(B − ⟨B⟩ψ)ψ∥H ≥
1
2
|⟨ψ, [A,B]ψ⟩H|, ⟨A⟩ψ := ⟨ψ, Aψ⟩H.

Remark 3.1. In the previous theorem, in caseA andB are associated with two observables a and

b, the result can be rephrased as
Varψ(a)Varψ(b) ≥ 1

4
Eψ[c ]2,

where c is the observable associated with i [A,B]. This implies that two incompatible observables

cannot be measured simultaneously with arbitrary precision in the pure state |ψ⟩, ψ∈H (the left-

hand side cannot vanish) in case Eψ[c ] ̸= 0. In particular, this implies that in case the system is in

the pure state |φ⟩, φ ∈D(AB) ∩D(BA), with φ a given eigenstate of A,D(A) (if there is any),

then either Varφ(b) = +∞ or Eφ[c ] = 0.

However, ρ and ρ̃ are two equivalent unitary representations of the translations, since ∀v ∈ Rd

Fρv = ρ̃v F , (Fψ)(p) = 1
(2π)d/2

lim
n→∞

∫
|x|≤n

dx e−ix·pψ(x),

with F : L2(Rd)−→L2(Rd) the unitary Fourier transform.

In accordance with classical mechanics, if the pure state |ψ⟩, ψ ∈ L2(Rd) represents a quantum

particle, its kinetic energyH0 is defined as 1
2m
P 2 with m > 0 the mass of such a particle. Clearly

H0 and Pi are compatible observables and the momentum is conserved in a free motion.

Theorem 3.2 (Noether’s theorem). If a self-adjoint operator A,D(A)∈L (H) is compatible with

the Hamiltonian of a quantum system H,D(H)∈L (H) (thus e−itHA ⊆Ae−itH, ∀ t ∈ R), then

D(A) is invariant under e−itH and A is a conserved quantity, i.e. for all ψ0 ∈ D(A)

⟨ψ0, Aψ0⟩H = ⟨ψt, Aψt⟩H, ψt = e−itHψ0 ∈ D(A), t ∈ R.

We stress that, given a pure state |ψE⟩ with ψE ∈ D(H) an eigenstate of the Hamiltonian with

eigenvalue E ∈R, one has that its evolution in time is simply e−itH|ψE⟩ = e−itE|ψE⟩ ∼ |ψE⟩. In

other words, eigenstates of the Hamiltonian stay the same over time.

In general, a widely studied class of operators in Quantum Mechanics in L2(RdN) is

H = −
N∑
i=1

∆xi

2mi

+
∑

1≤ i<j≤N

Vij (|xi− xj|), (*)

where the so-called potentials Vij are the multiplication operators by the (radial) real functions

Vij. Operators of the form (*) are called Schrödinger operators.

Theorem 3.3. Given H, H2(RdN)∈L
(
L2(RdN)

)
a Schrödinger operator, in case each pairwise

potential Vij ∈ L1
loc(Rd) satisfies

max{−Vij, 0} ∈


(Ld/2+ L∞)(Rd), if d ≥ 3;

(L1+ϵ+ L∞)(R2), for some ϵ > 0;

(L1+ L∞)(R1).

Then, one hasH, H2(RdN) is self-adjoint and lower-bounded.
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Then, take account of the group (R+, ·) and the unitary representation in L2(Rd) given by

(ρλψ)(x) = λd/2ψ(λx), λ ∈ R+.

Notice that ρe−s is a strongly-continuous, one-parameter unitary group for s ∈ R. The associated

generator is

D = 1
2
(Q ·P + P ·Q) = Q ·P − id

2
1, D(D) = {ψ ∈ L2(Rd) | x · ∇ψ(x) ∈ L2(Rd, dx)}.

D is known as the dilation operator.

Next, we consider the matrix group of rotations SO(3) represented in L2(S2) as follows

ρR = ψ(R−1x̂), ψ ∈ L2(S2), R ∈ SO(3), x̂ ∈ R3 : |x̂| = 1.

One can always decompose a rotation in R3 as a combination of three consecutive (counterclock-

wise) rotations around the axes identified by the canonical basis {ej}3j=1

R(t1, t2, t3) =M3(t3)M2(t2)M1(t1), ti ∈ [0, 2π),

M1(t) =


1 0 0

0 cos(t) − sin(t)

0 sin(t) cos(t)

, M2(t) =


cos(t) 0 sin(t)

0 1 0

− sin(t) 0 cos(t)

,

M3(t) =


cos(t) − sin(t) 0

sin(t) cos(t) 0

0 0 1

.
Therefore, a rotation by a given angle θ around the axis ej is ρMj(θ) : ψ(x̂) 7−→ ψ (M−1

j (θ) x̂)

which turns out to be a strongly-continuous, one-parameter, unitary group with generator

Lj = −i
3∑

k, ℓ=1

ϵjkℓ xk
∂
∂xℓ

called angular momentum (here ϵijk is the Levi-Civita symbol). In other words, L= Q ∧P and

[L2, Li] = 0, [Lj, Xk] = i
3∑

ℓ=1

ϵjkℓXℓ, Xk ∈ {Lk, Qk, Pk},

with L2 = L2
1 + L2

2 + L2
3. Concerning the spectrum, one has that L2 and one single Lj (e.g.

without loss of generality L3) have a common orthonormal basis of eigenfunctions ψℓ,m (known

as spherical harmonics) with

L2ψℓ,m = ℓ(ℓ+1)ψℓ,m, L3ψℓ,m= mψℓ,m, ℓ ∈ N0, m ∈ Z : |m| ≤ ℓ.

σ(L2) = σdisc(L
2) = {ℓ(ℓ+1) | ℓ ∈ N0}, σ(L3) = σdisc(L3) = Z.
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Our last example will be given by the action of the matrix group SU(2,C) in the Hilbert space C2,

where

SU(2,C) :=

{[
α −β̄
β ᾱ

] ∣∣∣∣∣ α, β ∈ C : |α|2 + |β|2 = 1

}
.

In particular, given the Pauli matrices {σi}3i=1

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
one has for any a = (a1, a2, a3) ∈ R3

Uj(aj) := cos(aj)1− i sin(aj)σj ∈ SU(2,C), ∀ j ∈ {1, 2, 3},

since αj = cos(aj)− iδj,3 sin(aj) and βj = −ij sin(aj)(1− δj,3). Our representation of SU(2,C)
in C2 shall be given by

ρU(t) = U(t) := U3(
t3
2
)U2(

t2
2
)U1(

t1
2
) ∈ SU(2,C), t = (t1, t2, t3) ∈ R3.

One can verify that
{
Ui
(
ti
2

)}3

i=1
are three strongly-continuous, one-parameter unitary groups with

generators Si = 1
2
σi, which are known as 1/2 – spin operators. In this situation the spectrum is

simply σ(Si) = σdisc(Si) =
{
± 1

2

}
and once again

[S2, Si] = 0, [Sj, Sk] = i
3∑

ℓ=1

ϵjkℓSℓ ,

where S2 = S2
1 + S2

2 + S2
3 . This is due to the fact that the Lie algebras associated with the Lie

groups SO(3) and SU(2,C) are isomorphic.

This construction can be generalized in order to obtain a unitary representation of SU(2,C) in

C2s+1, with s ∈ 1
2
N, obtaining the s – spin operators satisfying

S2 = s(s+1)1, [Sj, Sk] = i
3∑

ℓ=1

ϵjkℓ Sℓ.

In this case one has a common orthonormal basis of eigenvectors ψs,m ∈ C2s+1 for both S2 and

S3, provided by ψs,m = es−m+1 with {ei}2s+1
i=1 the canonical basis of R2s+1 and

S2ψs,m = s(s+1)ψs,m, S3ψs,m = mψs,m, m ∈ {−s,−s+1, . . . , s}.

More precisely, one has the explicit entries of such matrices (let j, k ∈ {1, . . . , 2s+1})

(S1)jk =
δj,k+1+ δj+1,k

2

√
(s+1)(j + k −1)− jk,

(S2)jk =
δj,k+1− δj+1,k

2
i
√

(s+1)(j + k −1)− jk,

(S3)jk = (s+1− j) δj,k.

For instance, in case s = 1

S1 =
1√
2

 0 1 0

1 0 1

0 1 0

, S2 =
1√
2

 0 −i 0

i 0 −i
0 i 0

, S3 =

 1 0 0

0 0 0

0 0 −1

.
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Proposition 3.4. Given S a spin operator acting on C2s+1 and a, b ∈ R3 one has

[a ·S, b ·S] = i(a ∧ b) ·S,

Rab = 1
2
Tr

[
e−ia·S(b ·S)eia ·SS

]
,

where Ra ∈ SO(3) is a rotation by an angle |a| around the axis generated by â = a
|a| .

Remark 3.2. From the previous proposition we find that a generic element of SU(2,C) denoted

by U(a) (in our case U(a) = e−ia·S) is mapped into an element of SO(3). This map is surjective,

but not injective. Indeed, in case s = 1/2, one can exploit the fact that (a ·σ)2 = |a|21 in order

to explicitly compute

e−ia ·S = cos
(|a|

2

)
1− i a ·σ

|a| sin
(|a|

2

)
which is in SU(2,C) since α = cos

(|a|
2

)
− i a3|a| sin

(|a|
2

)
and β = a2−ia1

|a| sin
( |a|

2

)
. Here one can

consider the couple of elements

U(a) = cos
(|a|

2

)
1− i â ·σ sin

(|a|
2

)
, U(2π â− a) = − cos

(|a|
2

)
1− i â ·σ sin

(|a|
2

)
,

where we took the angle |a| ∈ [0, 2π). By the statement of the previous proposition, both elements

of SU(2,C) are associated with the same rotation. Actually, one has the following isomorphism

SO(3) ∼= SU(2,C)⧸{±1} .

In general, in the one-particle Hilbert space L2(R3) ⊗ C2s+1 ∼= L2(R+, r
2dr) ⊗ L2(S2) ⊗ C2s+1

one can define the total angular momentum given by J = 1⊗L⊗ 1+ 1⊗ 1⊗ S.

In conclusion we want to convince the reader that in case the quantum system exhibits a symmetry,

we know, by the means of the Noether’s theorem, that there shall be a conserved quantity.

More precisely, given a group (G, ·) and a HamiltonianH,D(H)∈L (H) we say thatG is a group

of symmetry forH,D(H) if there exists a unitary representation ρ : G−→B (H) such that for all

g ∈G one has ρg andH,D(H) commute, namely1 ρgD(H)⊆D(H) and ρgHρ∗g =H on D(H).
Notice that in case there are two equivalent representations ρ and ρ̃ of the group G, namely there

exists a unitary operator U ∈B (H) such that ρ̃gU =Uρg for all g ∈G, one has

ρgH ⊆ Hρg ⇐⇒ ρ̃gH′ ⊆ H′ρ̃g,

where H′ = UHU∗ and D(H ′) = UD(H). However, in case a quantum system whose energy

is described by the Hamiltonian H,D(H) has a group of symmetry, we still need to understand

which is the conserved quantity, since we know that the unitary representation of the group com-

mutes with the Hamiltonian, but it is not in general an observable (i.e. a self-adjoint operator).

Therefore, suppose the group of symmetry for a Hamiltonian H,D(H)∈L (H) is a topological

1Actually, ρgD(H) ⊆ D(H) for any g ∈ G implies D(H) ⊆ ρg−1D(H), hence ρgD(H) = D(H).
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group (G, ·) and suppose there exists a group homomorphism2 ȷ : (R,+)−→(G, ·), i.e. a continu-

ous map satisfying

ȷ(t+ s) = ȷ(t) · ȷ(s), ∀ t, s ∈ R,

from which one also obtains that ȷ(0) is the neutral element of G and ȷ(−t) = ȷ(t)−1. We stress

that this means the image of ȷ is in general an abelian subgroup of G (surjectivity is not required).

In this situation, since ρ is a unitary representation, one has

ρȷ(0) = 1H, ρȷ(s+t) = ρȷ(s) ·ȷ(t) = ρȷ(s)ρȷ(t), ρȷ(t)
s−−−→

t→ t0
ρȷ(t0).

Now it should be clear that {ρȷ(t)}t∈R is a strongly-continuous, one-parameter, unitary group,

hence, by Stone’s theorem we know there exists a unique self-adjoint operator G,D(G)∈L (H)

such that ρȷ(t) = e−itG and since ρg commutes with H,D(H) for any g ∈ G one also has that

G,D(G) is compatible with the Hamiltonian and it is a conserved quantity of the system, by

Noether’s theorem.

2Notice that there is always the trivial case for which ȷ maps all real numbers in the neutral element of the group,

but in this situation the generator of the corresponding strongly-continuous, one-parameter, unitary group is the zero

operator, which is not interesting.
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