Gran Sasso Science Institute Mathematics Area Dr. Stefano Modena

Introduction to the mathematical analysis of incompressible Euler and Navier-Stokes equations

Sheet 3 - 2024, November 28

In this exercise sheet we prove that the Hilbert transform is a bounded operator $L^p(\mathbb{R}) \to L^p(\mathbb{R})$ for $p \in (1,2)$.

Exercise 9 (The Hilbert transform is well defined). For $f \in \mathcal{S}(\mathbb{R})$, consider the Hilbert transform

$$\mathcal{H}(f)(x) := \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{f(y)}{x - y} dy. \tag{4}$$

Show that the limit in (4) exists for all x and it is uniform in x. Deduce from this that $\mathcal{H}f$ is continuous and bounded.

Exercise 10 (Strong L^2 estimate). Show that

$$\|\mathcal{H}f\|_{L^2(\mathbb{R})} \le C\|f\|_{L^2(\mathbb{R})}.$$

In particular \mathcal{H} defined a linear bounded operator $L^2 \to L^2$.

Hint: Follow the steps:

1. Show that the equality

$$\mathcal{H}f = T * f \tag{5}$$

holds in $S'(\mathbb{R})$ (space of tempered distributions). Here T is the tempered distribution associated to the map 1/t, as defined in Exercise 8.

2. By taking the Fourier transform in (5), deduce that $\mathcal{H}f \in L^2(\mathbb{R})$ and

$$\|\mathcal{H}f\|_{L^2(\mathbb{R})} \le C\|f\|_{L^2(\mathbb{R})}.$$

In particular, \mathcal{H} extends to a bounded linear operator $L^2 \to L^2$.

Exercise 11 (Calderon-Zygmund decomposition). Let $f: \mathbb{R} \to [0, \infty)$ be in $L^1(\mathbb{R})$. Let $\lambda > 0$. Show that there is a (finite or countable) family $\{I_k\}_{k \in \mathbb{N}}$ of closed intervals with pairwise disjoint interiors such that

- (a) $f(x) \leq \lambda$ for a.e. $x \in \mathbb{R} \setminus \bigcup_k I_k$,
- (b) $|\bigcup_{k} I_{k}| \leq \frac{C}{\lambda} ||f||_{L^{1}(\mathbb{R})},$
- (c) $\lambda \leq f_{I_k} f < 2\lambda$ for all k.

Hint: Follow the steps:

- 1. Find first a > 0 such that $f_{[na,(n+1)a]} f < 2\lambda$ for all $n \in \mathbb{Z}$.
- 2. Select all intervals [na, (n+1)a] where it also holds $\lambda \leq \int_{[na,(n+1)a]} f$.
- 3. Split the remaining ones in two and proceed by induction.

Exercise 12 (Weak L^1 -estimate). Show that, for all $f \in \mathcal{S}(\mathbb{R})$,

$$|\{x \in \mathbb{R} : \mathcal{H}f(x) > \lambda\}| \le \frac{C}{\lambda} ||f||_{L^1(\mathbb{R})}. \tag{6}$$

Follow the steps:

1. Assume that $f \in L^1(\mathbb{R})$ with supp $f \subseteq [-a,a]$ and $f_{[-a,a]} f = 0$. Show that

$$\|\mathcal{H}f\|_{L^1(\mathbb{R}\setminus[-2a,2a])} \le C\|f\|_{L^1([-a,a])}.$$

2. More generally, assume that $f = \sum_{k \in \mathbb{N}} f_k$, where each $f_k \in L^1(\mathbb{R})$, supp $f_k \subseteq I_k$, $f_{I_k} f_k = 0$, and the I_k 's are closed intervals with pairwise disjoint interior. Similarly to the previous point, show that

$$\|\mathcal{H}f\|_{L^1(\mathbb{R}\setminus\bigcup_k 2I_k)} \le C\|f\|_{L^1(\mathbb{R})},$$

where $2I_k$ denotes the interval having the same center as I_k , but double length.

- 3. Prove the weak L^1 -estimate (6) holds when $\lambda \geq ||f||_{L^{\infty}}$.
- 4. Prove now (6) for any $f \geq 0$. To do this, combine the Calderon-Zygmund decomposition of Exercise 11 with the previous two points.
- 5. For general f, write $f = f^+ f^-$, where f^{\pm} are the positive/negative part of f.

Exercise 13 (Strong L^p estimate, $p \in (1,2)$). Show that, for all $p \in (1,2)$,

$$\|\mathcal{H}f\|_{L^p(\mathbb{R})} \le C_p \|f\|_{L^p(\mathbb{R})}.$$

In particular, \mathcal{H} defines a linear bounded operator $L^p \to L^p$, $p \in (1,2)$.

Hint: Use an interpolation argument similar to the one used for the maximal function in Exercise 6.

Exercise 14 (Strong L^p estimate, $p \in (2, \infty)$). Show that, for all $p \in (2, \infty)$,

$$\|\mathcal{H}f\|_{L^p(\mathbb{R})} \leq C_p \|f\|_{L^p(\mathbb{R})}.$$

In particular, \mathcal{H} defines a linear bounded operator $L^p \to L^p$, $p \in (2, \infty)$. Hint: Follow the steps:

1. Prove that \mathcal{H} is skew adjoint, i.e.

$$\int \mathcal{H} f g dx = -\int f \mathcal{H} g, \qquad f, g \in \mathcal{S}(\mathbb{R}).$$

2. Use a duality argument based on the dual characterization of the \mathcal{L}^p norm

$$||g||_{L^p} = \sup_{\substack{\varphi \in \mathcal{S}(\mathbb{R}) \\ ||\varphi||_{L^p'} \le 1}} \int g\varphi dx.$$