WS2024/25

GRAN SASSO SCIENCE INSTITUTE MATHEMATICS AREA DR. STEFANO MODENA

Introduction to the mathematical analysis of incompressible Euler and Navier-Stokes equations Sheet 2 - November 14, 2024

Exercise 5 (Vitali type covering). Let $E \subseteq \mathbb{R}^d$ be measurable and let \mathcal{F} be a (possibly uncountable) family of balls such that

$$E \subseteq \bigcup \mathcal{F}.$$

Then there is a (finite or countable) subfamily

$$\mathcal{F}' = \{B_1, B_2, \cdots\} \subseteq \mathcal{F}$$

such that:

(a) balls in \mathcal{F}' are pairwise disjoint,

(b) $|E| \leq C_d \sum_k |B_k|$, for some constant C_d depending only on d.

Exercise 6 (Maximal function). For $f \in L^1_{loc}(\mathbb{R}^d)$, recall the definition of the maximal function

$$Mf(x) := \sup_{r>0} \oint_{B_r(x)} |f(y)| dy.$$

Show that

$$||Mf||_{L^p(\mathbb{R}^d)} \le C_p ||f||_{L^p}$$
 (2)

for any $p \in (1, \infty]$. Follow the steps:

- 1. Prove first the trivial case $p = \infty$.
- 2. For a measurable map φ on \mathbb{R}^d , denote by

$$D_{\varphi}(\alpha) := |\{x : |\varphi(x)| > \alpha\}|.$$

Using Exercise 5, show that

$$D_{Mf}(\alpha) \le \frac{C}{\alpha} \|f\|_{L^1}.$$

This is called weak- L^1 estimate.

3. For fixed $\alpha \in (0,\infty)$, split f as the sum of an L^1 and an L^{∞} map:

$$f = g + h = f\chi_{\{|f| > \alpha\}} + f\chi_{\{|f| \le \alpha\}} \le f\chi_{\{|f| > \alpha\}} + \alpha.$$

and observe that

$$D_{Mf}(2\alpha) \le D_{Mg}(\alpha) \le \frac{C}{\alpha} \|g\|_{L^1(\mathbb{R}^d)} = \frac{C}{\alpha} \int_{\{x : |f(x)| > \alpha\}} |f(x)| dx.$$

4. Show that, for any measurable map φ and any $p \in [1, \infty)$,

$$\int_{\mathbb{R}^d} |\varphi(x)|^p dx = p \int_0^\infty \alpha^{p-1} D_\varphi(\alpha) d\alpha.$$

5. Combine all previous points to estimate $||Mf||_{L^p}$. This is a typical example of the more general Marcinkiewicz interpolation Theorem.

Exercise 7. Prove that (2) does not hold for p = 1.

Exercise 8. Consider the map $T : \mathcal{S}(\mathbb{R}) \to \mathbb{R}$

$$f \mapsto T(f) := \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{f(x)}{x}.$$
(3)

- (i) Show that T is well defined.
- (ii) Show that T is a tempered distribution.
- (iii) Show that \hat{T} (the Fourier transform of T) is represented by a function $m(\xi) = c \operatorname{sign}(\xi)$, for some constant $c \in \mathbb{C}$.
- (iv) Compute c.