WS2024/25

Gran Sasso Science Institute Mathematics Area Dr. Stefano Modena

Introduction to the mathematical analysis of incompressible Euler and Navier-Stokes equations Sheet 1 - November 7, 2024

Exercise 1. Let $u: I \times \mathbb{R}^d \to \mathbb{R}^d$ be a continuously differentiable vector field satisfying $\sup_t \|\nabla u(t,\cdot)\|_{L^{\infty}} < \infty$. Let $X, A: I \times \mathbb{R}^d \to \mathbb{R}^d$ be the associated flow map and back-to-labels map respectively and $J(t,a) := \det \nabla_a X(t,a)$ the associated Jacobian. Show that

(i) X satisfies

$$e^{-\int_0^t \|\nabla u(s)\|_{L^{\infty}} ds} \le \frac{|X(t,a) - X(t,b)|}{|a-b|} \le e^{\int_0^t \|\nabla u(s)\|_{L^{\infty}} ds},$$

- (ii) A satisfies $\partial_t A + u \cdot \nabla A = 0$, $A|_{t=0} = id$,
- (iii) J satisfies $\partial_t J(t, a) = J(t, a)(\operatorname{div} u)(t, X(t, a)), J(0, a) \equiv 1.$

Exercise 2. Let $f \in W^{1,1}(\mathbb{R}^d)$. Show that

$$\int_{\mathbb{R}^d} \partial_j f = 0 \text{ for all } j \in 1, \dots, d.$$

Exercise 3 (Laplace equation). Let $\Omega \subseteq \mathbb{R}^d$. Let $u \in C^2(\Omega)$. Show that

(i) $\Delta u = 0$ if and only if

$$u(x) = \int_{\partial B_r(x)} u(y) dS(y) = \int_{B_r(x)} u(y) dy \text{ for all } B_r(x) \subset \subset \Omega.$$

Such u's are called harmonic maps (on Ω).

- (ii) Let u be harmonic on Ω . Prove that $u \in C^{\infty}$.
- (iii) (Liouville's Theorem) Let u be harmonic on \mathbb{R}^d . Show that u bounded implies u constant.

Exercise 4 (Poisson equation).

- (i) Find all radial maps u satisfying $\Delta u = 0$ on $\Omega = \mathbb{R}^d \setminus \{0\}$. u being radial means that there is $g: (0, \infty) \to \mathbb{R}$ such that u(x) = g(|x|).
- (ii) Show that all u's from the previous point are in $L^1_{loc}(\mathbb{R}^d)$. What is Δu in $\mathcal{D}'(\mathbb{R}^d)$?

(iii) Define, for $x \neq 0$, the Newton potential

$$N(x) := \begin{cases} -\frac{1}{2\pi} \log |x|, & d = 2, \\ \frac{1}{d(d-2)\alpha_d} \frac{1}{|x|^{d-2}}, & d \ge 3, \end{cases}$$

where α_d is the volume of the unit ball in \mathbb{R}^d . Show that for all $f \in C_c^{\infty}(\mathbb{R}^d)$, the map u := N * f solves

$$-\Delta u = f. \tag{1}$$

Here N * f denotes the convolution between N and f. Note that this convolution is well defined because $N \in L^1_{loc}(\mathbb{R}^d)$ and f has compact support.

(iv) Let $d \ge 3$. Show that N * f is the unique bounded solution solution (up to additive constant) to (1).