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Part I: 
Clusters as tracers  
of cosmic evolution  



HST

Concentrations of ~103 galaxies

 σv~500-1000 km s-1

Size: ~1-2 Mpc

Mass: ~1014-1015 M◉                      

            ➔ λi ≈10 Mpc

Abell 1689

What is a galaxy cluster ?
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Concentrations of ~103 galaxies

 σv~500-1000 km s-1

Size: ~1-2 Mpc

Mass: ~1014-1015 M◉                      

            ➔ λi ≈10 Mpc
-Baryon content:   
➔  cosmic share (~15%) in             
    hydrostatic equilibrium
ICM temperature:       
➔ T ~  2-10 keV            
➔    fully ionized plasma; 
Thermal bremsstrahlung             
➔ ne~10-2-10-4 cm-3  
➔    LX ~ ne

2 V ~ 1045 erg s-1 

Abell 1689

What is a galaxy cluster ?



Inverse Compton 
scattering of CMB 

photons off the ICM 
electrons

Sunyaev-Zeldovich Effect



➔ Signal virtually independent of  
redshift 
➔ Proportional to the l.o.s. 
integration of neTe ~ pressure 

➔ Wider dynamic range accessible 
➔ We are now in the era of SZ 
cluster cosmology (e.g. ACT, SPT, 
Planck)

Inverse Compton 
scattering of CMB 

photons off the ICM 
electrons

Sunyaev-Zeldovich Effect

Coma as seen by Planck



Galaxy Clusters & Cosmic Growth

➔ One-to-one relationship between expansion and growth

➔ Traced by the evolution of the cluster population 
 



dN(X;z)
dXdz

=
dV
dz

f (X, z) dn(M,z)
dM

dp(X |M,z)
dX

dM
0

∞

∫
➔ No. of clusters of given  
      observable X and z 
within      
      the survey area 

Information from a cluster 
survey



dN(X;z)
dXdz

=
dV
dz

f (X, z) dn(M,z)
dM

dp(X |M,z)
dX

dM
0

∞

∫

1. Friedmann background: ➔ Priors from CMB, BAO, SN-Ia, 
…. 

dV
dz

➔ No. of clusters of given  
      observable X and z 
within      
      the survey area 

Information from a cluster 
survey



dN(X;z)
dXdz

=
dV
dz

f (X, z) dn(M,z)
dM

dp(X |M,z)
dX

dM
0

∞

∫

1. Friedmann background: ➔ Priors from CMB, BAO, SN-Ia, 
…. 

➔ Observational strategy

dV
dz

➔ No. of clusters of given  
      observable X and z 
within      
      the survey area 

2. Selection function: f (X, z)

Information from a cluster 
survey



dN(X;z)
dXdz

=
dV
dz

f (X, z) dn(M,z)
dM

dp(X |M,z)
dX

dM
0

∞

∫

1. Friedmann background: 

3. Growth history 
and nature of 
perturbations: 

dn(M,z)
dM

➔ Priors from CMB, BAO, SN-Ia, 
…. 

➔ Observational strategy

dV
dz

➔ No. of clusters of given  
      observable X and z 
within      
      the survey area 

2. Selection function: f (X, z)

➔ Precisely calibrated with N-
body  
      simulations

Information from a cluster 
survey



dN(X;z)
dXdz

=
dV
dz

f (X, z) dn(M,z)
dM

dp(X |M,z)
dX

dM
0

∞

∫

1. Friedmann background: 

p(X |M,z)

3. Growth history 
and nature of 
perturbations: 

dn(M,z)
dM

➔ Priors from CMB, BAO, SN-Ia, 
…. 

➔ Observational strategy

4. Astrophysics: 

dV
dz

➔ Priors on “nuisance parameters” pj 
from follow-up observations and/or 
cosmological simulations

➔ No. of clusters of given  
      observable X and z 
within      
      the survey area 

2. Selection function: f (X, z)

➔ Precisely calibrated with N-
body  
      simulations

Information from a cluster 
survey



 δc : linear critical density 
 constrast for spherical 

collapse

D(z, k)=D(Ωm,ΩDE, Ων, w, ...): linear growth rate of density fluctuations

➔  Mass variance at the scale M and        
redshift  z for the filter function WM(k).
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    (A, a, p): fitting parameters from N-body
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➔ σ8 = 0.75 ± 0.05               
     (Ωm = 0.27)                              

for the reference analysis 

SB et al. ’01; Rosati, SB & Norman ‘02 
➔ ~100 clusters identified from ROSAT PSPC pointings  
➔ Only X-ray luminosity available

➔ Results dependent         
on ICM physics....

Cluster Cosmology ~20 yrs ago

 ➔ Ωm<0.6 at >3σ 



Planck collab. 2013 XX Number counts for 189 
Planck-SZ clusters

➔X-ray (XMM) calibrated   
  mass scaling

➔Tension with Planck  
  primary CMB

➔b=0.2 (HE mass bias):  
  suggested by simulations

➔Agreement with constraints  
    from:
• Planck-y map
• Other cluster counts
• Cosmic shear

Planck CMB & clusters



Cluster cosmology as of today

Costanzi+2018: abundance 
and weak-lensing of 
RedMapper clusters from 
SDSS (z=0.1-0.3)

➔ ~7000 clusters used

➔ No evidence of tension 
with CMB constraints and 
constraints from other 
cluster catalogues

Optical 
surveys



Cluster cosmology as of today

Bocquet+2018: cluster counts in 
the SPT-SZ survey (z=0.25-1.75)

➔ 377 clusters used, 
supplemented by 
HST+Magellan WL mass and 
Chandra X-ray observations

➔ Allow neutrino mass to be a 
free parameter

➔  

➔ Test of growth of structure in 
agreement with GR 

SZ surveys



Part II: 
Simulations for cluster cosmology



➔ Evolve cosmic structures 
from initial conditions set by CMB 
observations 

Why simulations of clusters? 

➔ Impact of astrophysical 
processes in determining the 
observational properties of 
clusters 

➔ Understand systematics and 
biases in the calibration of 
clusters as tools for cosmology

What simulations are used for?
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Large-scale hydrodynamic simulations

“Magneticum”
Dolag+2015

www.magneticum.org 

“Illustris-
TNG300”

Vogelsberger+2017
www.tng-project.org

“Bahamas”
McCarthy+2017

http://
www.astro.ljmu.ac.uk/
~igm/BAHAMAS/

“Horizon”
https://www.horizon-
simulation.org



Zoom-in simulations
➔ Dianoga simulations 
Rasia et al. 2015

➔ “The 300” project 
Cui et al. 2018

➔ MACSIS simulations 
Barnes et al. 2017

➔ Hydrangea/C-EAGLE 
Bahè et al. 2018

➔ FABLE 
Henden et al. 2019



Zoom-in simulations
➔ 140 halos with Mvir>5 x 1013 h-1 M◉ 

➔ Hydro (Beck+15): Gadget-3 SPH +  
•  Higher-order kernel 
•  “Wake-up” scheme for time-step of 

gas particles 
•  Time-dependent artificial viscosity 
•  Artificial conduction 

➔ Astrophysics: 

• Cooling + SF + SN feedback 
(Springel & Hernquist 03) 

• Chemical enrichment 
(Tornatore+07)

• AGN feedback (Steinborn+15)Dianoga 
simulations



BH scaling relations

➔MBH-M* relation to 
calibrate feedback 
parameters
Observations from: 
McConnell & Ma 2013
Main+2017 (MBH from K-
band luminosity)

Bassini+19
Bassini+20 ; in 
prep
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BH scaling relations

➔MBH-M* relation to 
calibrate feedback 
parameters
Observations from: 
McConnell & Ma 2013
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ICM properties 
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Part II.a: 
Calibration of the Halo Mass Function



E.g. for ΛCDM: Sheth & Tormen 2001, Jenkins+2001, Evrard+2002, Springel+2005, 
Warren+2007, Reed+2007, Tinker+2008, Crocce+2010, Courtin+2011, 
Bhattacharya+2011, Angulo+2012, Watson+2013, Despali+2016,  ....

Calibration of halo mass function

What is a universal HMF?

Why calibrating a universal HMF?

n(M ,z)dM =
ρ

M 2 f (ν )
d lnν
d lnM

dM

v = δc /σM (z)

• Functional form of f(𝜈) independent of cosmology
• Cosmology entering only through 𝜈(M,z)

• Much easier to sample parameter space of cosmological 
models
• No need to carry out brute-force calibration with N-body 

simulations when changing cosmology



Tinker+2008

Violation of universality ….

➔ HMF from several 
simulations of WMAP1 and 
WMAP3 cosmologies 

➔ SO halo finder at 
several values of 
overdensity 𝜟 (in units of 
mean cosmic density) 
 

Main result: significant violation of universality, whose amount 
depends on halo mass definition
Q1: can such a lack of universality be calibrated?
Q2: should this be surprising?



…. or maybe not

Despali+2016

• Homogeneous set of simulations of 
Planck-concordance cosmology

• Universality expected to hold when 
using the redshift- and cosmology-
dependent values of 𝜟 predicted by 
spherical collapse  

➔ HMF consistent with being 
universal     
         within 10%

Q1: Is universality preserved for 
beyond-   
       𝛬CDM cosmologies?
Q2: Is it accurate enough for the 



Towards a universal HMF

Castro+2020a in 
prep

• Large suite of N-body simulations 
with 10243 particles for Planck 
cosmology + 2 more cosmologies:

     - 11 x 1 h-1 Gpc boxes
     - 11 x 2 h-1 Gpc boxes
➔ Total of ~66 boxes 
➔ Sheth+2001 fitting function

➔ HMF consistent with being 
universal within ~1%  
➔ Subdominant wrt propagated 
uncertainties in WL mass 
calibration

z=0

z=1

Planck cosmology



➔ Opposite effects for CSF 
and AGN simulations 
➔ AGN: ~20% decrease at 
M500=dex(13.5) h-1 M◉ 

➔ Independent of redshift 

z=2.2 z=1.0

z=0.6 z=0

SN feedback

+ AGN feedback

Q1: what’s the impact on cosmological constraints?

Q2: how robust is the calibration of the baryon effects on halo masses?

Effects of baryons on the HMF

Cui+2015



Martizzi+14 : 
RAMSES

Vogelsberger+14 : AREPO

Bocquet+16 : GADGET-3 (Magneticum)

Schaller+14: GADGET-3 (Eagle) 

Velliscig+15 : GADGET-3 (OWLS)

Effects of baryons on the HMF



Costanzi+14

➔ Planck CMB  

➔ BAO from SDSS-DR11 
(Anderson+14) 

➔ CCCP clusters (Vikhlinin+09) 
➔ Massive neutrinos included  
BM: mass bias = [0.8-1]

BC: HMF baryonic correction  
➔ Alleviate tension with Planck 

CMB 
➔ Crucial to calibrate for future 

surveys 

Impact on cosmological constraints



Castro+2020b in 
prep

➔ Use the suite of “Magneticum” 
large-scale hydro simulations 

➔ Fit to a universal Tinker-like 
HMF with more degrees of 
freedom to account for 
baryonic effects  

➔ Non negligible effects on the 
HMF 

➔ Larger than statistical 
uncertainties from future (e.g. 
Euclid) cluster surveys

Baryonic effects on the HMF

z=0

z=0.5



Part II.b: 
Biases in Mass Measurements



➔ Cosmological simulations to test 
the accuracy of hydrostatic 
equilibrium in clusters  
(e.g. Rasia+06,12, Nagai+07, 
Morandi+07, Piffaretti & Valdarnini 08, 
Meneghetti+09, Lau+09,13, Kay+11, 
Suto+13, Biffi+16, Pearce+19, 
Ansarifard+20)

General consensus: 10-20% 
underestimate of true masses from 
HE, depending on the cluster 
dynamical status

Origins of the bias:
1. Non-thermal motions 

generating a non-thermal 
pressure support

2. Acceleration term in the Euler 
equation

Biffi+2016

Masses from hydrostatic 
equilibrium
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X-ray temperature bias

Q: What’s the temperature measured from an X-ray spectrum for a 
plasma which is not single temperature? (Mazzotta+2004; Vikhlinin 
2006)



X-ray temperature bias

Q: What’s the temperature measured from an X-ray spectrum for a 
plasma which is not single temperature? (Mazzotta+2004; Vikhlinin 
2006)
➔ In realistic conditions, single-T 
model still a good fit to a multi-T 
model  

What do we measure in simulations?
Mass-weighted temperature:

Emission-weighted 
temperature:

Spectroscopic-like 
temperature:

➔ Proxy of the temperature from spectral fitting, 
accounting for thermal complexity of the ICM

Tew

Tsl



X-ray temperature bias

Em-
weighted

Spectr.-like
Chandra mock

observation 

• Tsl is a close proxy to the 
temperature obtained from 
spectral fitting, in a Chandra- or 
XMM-like setup

• Sizeble difference between Tew 
and Tsl

• Tsl lower due to larger weight of 
cooler regions



X-ray temperature bias

Biffi+2016

• Tsl is a close proxy to the 
temperature obtained from 
spectral fitting, in a Chandra- or 
XMM-like setup

• Sizeble difference between Tew 
and Tsl

• Tsl lower due to larger weight of 
cooler regions

• Small but sizeable mass-bias that 
adds to the HE bias

• Effect dependent on the thermal 
complexity of the ICM

➔ Not trivial to calibrate with 
         simulations



➔ Clusters identified in a 
large (1 Gpc/h) N-body 
cosmological simulation 

➔ Spherical NFW fitting to 
tangential shear profile 

➔ 5-10% negative bias in 
recovered masses 

➔ Significant bias induced 
by triaxial halo shape, 
correlated and 
uncorrelated structures

Testing the reliability of WL masses

See lectures by A. 
Heavens

Becker & Kravtsov 11

Idealized mass reconstruction, i.e. 
no observational effects included



➔ 20 clusters @ z=0.25  with  
M200> 5x1014 M◉ 

➔ 3 projections for each  
cluster 
➔ Generate Subaru 
SuprimeCam mock lensing 
observations  
➔ Generate Chandra mock 
event files 

➔ Quantitative assessment of 
(some) observational biases 

X-ray and WL masses
HST-WFC3 lensing of a massive simulated cluster at z=0.25              
➔ Based on the SkyLens tool (Meneghetti+08) Meneghetti+08



Rasia+12 Event files from X-MAS Chandra simulator with 100 ks exp. time
➔ [0.7-2] keV X-ray image (16 x 16 arcmin2)

➔ 20 clusters @ z=0.25  with  
M200> 5x1014 M◉ 

➔ 3 projections for each  
cluster 
➔ Generate Subaru 
SuprimeCam mock lensing 
observations  
➔ Generate Chandra mock 
event files 

➔ Quantitative assessment of 
(some) observational biases 

X-ray and WL masses
HST-WFC3 lensing of a massive simulated cluster at z=0.25              
➔ Based on the SkyLens tool (Meneghetti+08) Meneghetti+08



200 500 2500

Black: MX/Mtrue Red: MX/Mtrue using Tmw Green: MX/MWL

Bias in X-ray masses: 

➔ 10-15% from violation of hydrostatic equilibrium 
➔ ~15-20% from bias in X-ray temperature estimate (Q: simulations 
reliable?) 
Bias in WL masses: ~10% underestimate at R500 (also Becker & Kravtsov 11)

Origin of  X-ray mass bias



 
The Future



The future
SPT-3G • 2500 sq.deg. 

• ~16,000 receivers (~1000 in SPT-SZ) 
• Frequencies: 95, 150, 220 GHz 
• ~104 clusters to be detected 
• Detect clusters out to z~2 and M~1014 

M◉ 

➔ NOW TAKING DATA



eROSITA

• All sky-survey 
• Survey speed: 4 times larger than 

XMM 
• PSF: 28” in survey mode 
• ~105 clusters to be detected 
• Secure all clusters > 1015 M◉ 

• Launch in Sept. 2019
➔ 1st LIGHT ON OCT. 2019
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• 1.2m mirror 
• Optical imaging 
• NIR (YJH) photometry & NIR grism 
• 15,000 sq.deg. to be covered 
• Launch in 2021 
• Cosmology 

• Cosmic shear 
• BAO & RSD 
• Galaxy clusters

http://www.euclid-ec.org

Euclid

The future



• 1.2m mirror 
• Optical imaging 
• NIR (YJH) photometry & NIR grism 
• 15,000 sq.deg. to be covered 
• Launch in 2021 
• Cosmology 

• Cosmic shear 
• BAO & RSD 
• Galaxy clusters

http://www.euclid-ec.org

Euclid

The future

LSST
• 8.4m mirror 
• ugrizy photometry 
• ~18,000 sq.deg. to be covered 
• Operations to start in 2022 
• Highly complementary to Euclid 
• Similar/complementary science 

cases and cosmological probes



The Euclid Cluster Survey

3𝜎

5𝜎

Sartoris+2016 

• Selection function for 
photometric cluster 
identification in the Euclid 
wide survey (HAB<24)



The Euclid Cluster Survey

3𝜎

5𝜎

Sartoris+2016 

• Selection function for 
photometric cluster 
identification in the Euclid 
wide survey (HAB<24)
• ~106 clusters to be found
• ~few x 105 at z>1

➔ Statistics not an issue!

Q: take them all, including 
systematics, or select a 
’’golden’’ sample with many 
fewer clusters?



WL masses with Euclid

Photometric selection function
Sartoris+2016 

Expected no. of clusters with 
WL mass at a given accuracy

Minimum WL mass estimated with 
a certain accuracy (Giocoli+18)



Cosmology with Euclid Clusters

Sartoris+15
DE equation of state:



Cosmology with Euclid Clusters

Sartoris+15

The power of pushing to 
z>1: 
➔ About 70% of FoM from 
clusters at z>1 

➔ σγ=0.02: >1 order of 
magnitude improvement 
wrt current constraints

DE equation of state:



Take home messages

• Huge potential of galaxy clusters for cosmology!

• Cosmological simulations as useful guidelines to
➔ understand and calibrate biases in mass measurements
➔ assess precision and robustness of mass proxies

• Mind: observational data will tell the final word on this!

• All this under control at the level required by current surveys

• Next generation surveys require a quantum leap in the control 
of all these systematics!



Take home messages

• Huge potential of galaxy clusters for cosmology!

• Cosmological simulations as useful guidelines to
➔ understand and calibrate biases in mass measurements
➔ assess precision and robustness of mass proxies

• Mind: observational data will tell the final word on this!

• All this under control at the level required by current surveys

• Next generation surveys require a quantum leap in the control 
of all these systematics!

➔ Cluster cosmology is much more than counting 
clusters!
➔ Lots of astrophysics to understand in the process….


