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IFPU Colloquia starting on March 21, Call for IFPU programs now open
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next deadline for receiving Read more...



Part |:
Clusters as tracers
of cosmic evolution



} Concentrations of ~103 galaxies

G,~500-1000 km s

Size: ~1-2 Mpc

Mass: ~1014-1015 Mg
- A =10 Mpc




X-ray
electron .

N\ Concentrations of ~103 galaxies

>
proton

0,~500-1000 km s

Size: ~1-2 Mpc

Mass: ~1014-1015 Mg

- A =10 Mpc
-Baryon content:

= cosmic share (~15%) in
hydrostatic equilibrium

|ICM temperature:

2> T~ 2-10 keV

- fully ionized plasma;

Thermal bremsstrahlung

- n~102-104cm-=
2> Ly~n2V~104 erg s




Sunyaev-Zeldovich Effect
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Sunyaev-Zeldovich Effect

Wavel th
G o ey (min) 0.5

Inverse Compton
scattering of CMB
photons off the ICM
electrons

Y

Intensity (MJy sr~
- o

- Signal virtually independent of
redshift

= Proportional to the l.o.s.
integration of n_ T, ~ pressure

- Wider dynamic range accessible

-> We are now in the era of SZ
cluster cosmology (e.g. ACT, SPT,
Planck)
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- Traced by the evolution of the cluster population
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within
the survey area
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Information from a cluster

dN( X 2) _ dV dn(M 2)d(X| M, 2 Y -> No. of clusters of given
Xz~ dz Z)f X observable X and z
within

the survey area

. adVv
1. Friedmann background: - 2 Priors from CMB, BAO, SN-la,

2. Selection function: f(X/2) > Observational strategy



dN( X; 2) _ dv dn(M 2) dp(X| M, 2) Y > No. of clusters of given
aXaz az f(x Z)f aX observable X and z
within

the survey area
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1. Friedmann background: - - Priors from CMB, BAO, SN-Ia,

2. Selection function: f(X 2) - Observational strategy

3. Growth history  gnp,2) S Precisely calibrated with N-
and nature of avi body

perturbations:

simulations



dN( X; 2) _ dv dn(M 2) dp(X| M, 2) Y > No. of clusters of given
aXaz az f(x Z)f aX observable X and z
within

the survey area

. av
1. Friedmann background: - - Priors from CMB, BAO, SN-Ia,

2. Selection function: f(X 2) - Observational strategy

3. Growth history  gnp,2) S Precisely calibrated with N-
and nature of avi body

perturbations:

simulations

- Priors on “nuisance parameters” p;

from follow-up observations and/or
cosmological simulations

4. Astrophysics: p(X| M, 2)
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V= 60 /O v (z) 0, : linear critical density

constrast for spherical
collapse

2
03 (2) = D 2 f ak K P(k\W. (k) = Mass variance at the scale M and
redshift z for the filter function W, (k).
D(z, k)=D(Q,,Q,, 2, w, ...): linear growth rate of density fluctuations

1/2

v iv)= (2\,_75) g'? => Press & Schechter 74

1/2

1 v —av
(av)p](zn) &“*> Sheth & Tormen 99
(A, a, p): fitting parameters from N-body

vi(v)=All+




Cluster Cosmology ~20 yrs ago

SB et al. '01; Rosati, SB & Norman ‘02

- ~100 clusters identified from ROSAT PSPC pointings
= Only X-ray luminosity available
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Planck CMB & clusters

Planck collab. 2013 XX
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Planck-SZ clusters

->X-ray (XMM) calibrated
mass scaling

->Tension with Planck
primary CMB

->b=0.2 (HE mass bias):
suggested by simulations

->Agreement with constraints

from:
* Planck-y map
* Other cluster counts

e Cosmic shear



Cluster cosmology as of today { HEY

0.90

0.84
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Optical

| _
PlanckDR18
PlanckDR15
Cluster .

BAO
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0

Costanzi+2018: abundance
and weak-lensing of
RedMapper clusters from
SDSS (z=0.1-0.3)

- ~7000 clusters used

S5 = 075(€,/0.3)%% = 079993,

—-0.04

-> No evidence of tension
with CMB constraints and
constraints from other
cluster catalogues



Cluster cosmology as of today
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SZ surveys

Bocquet+2018: cluster counts in
the SPT-SZ survey (z=0.25-1.75)

-> 377 clusters used,
supplemented by
HST+Magellan WL mass and
Chandra X-ray observations

-> Allow neutrino mass to be a

free o 0276+ 0.047

5 os = 0.781 £ 0.037

-> Test of growth of structure in
agreement with GR



_ _ Part Il:
Simulations for cluster cosmology



-> Evolve cosmic structures
from initial conditions set by CMB
observations

Why simulations of clusters?

- Impact of astrophysical
processes in determining the
observational properties of
clusters

- Understand systematics and
biases in the calibration of
clusters as tools for cosmology
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-> Evolve cosmic structures
from initial conditions set by CMB
observations

Why simulations of clusters?

- Impact of astrophysical
processes in determining the
observational properties of
clusters

- Understand systematics and
biases in the calibration of
clusters as tools for cosmology



very small volumi/ very high resolution

“Magneticum”
Dolag+2015

www.magneticum.org

“Mustris-

TNG300”
Vogelsberger+2017

www.tng-project.org
@ahamas

McCarthy+2017
http://
www.astro.ljmu.ac.uk/
~igm/BAHAMAS/

“Horizon”

https://www.horizon-
simulation.org




- Dianoga simulations
Rasia et al. 2015

- “The 300" project
Cui et al. 2018

- MACSIS simulations
Barnes et al. 2017

- Hydrangea/C-EAGLE
Bahe et al. 2018

- FABLE
Henden et al. 2019



- 140 halos with M, >5 x 1013 h-1 M,

| > Hydro (Beck+15): Gadget-3 SPH +

* Higher-order kernel

o “Wake-up” scheme for time-step of
gas particles

| ® Time-dependent artificial viscosity

e Artificial conduction

-> Astrophysics:

e Cooling + SF + SN feedback
(Springel & Hernquist 03)

e Chemical enrichment
(Tornatore+0Q07)

e AGN feedback (Steinborn+15)



BH scaling relations

_ 4 Gaspari et al. 2019

[ ---- McConnell & Ma 2013 fit mixed sample

Bassini+19
Bassini+20 ; in

E{ sy-M. relation to
calibrate feedback
parameters
Observations from:
McConnell & Ma 2013
Main+2017 (Mg, from K-

band luminosity)



BH scaling relations { XY

| ---- McConnell & Ma 2013 fit mixed sample
= 4 Gaspari etal. 2019

Bassini+19
Bassini+20 ; in

[ .
Fl) sy-M. relation to

calibrate feedback
parameters
Observations from:
McConnell & Ma 2013
Main+2017 (Mg, from K-

band luminosity)

->Relationship with general
ICM properties
(temperature) also
reproduced

Observations from:
Gaspari+2019



BH scaling relations { N
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HR Simulations
LR Simulations
Gaspari et al. 2019
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[ :
Fl) sy-M. relation to

calibrate feedback
parameters
Observations from:
McConnell & Ma 2013
Main+2017 (Mg, from K-

band luminosity)

->Relationship with general
ICM properties
(temperature) also
reproduced

Observations from:
Gaspari+2019



Part ll.a:
Calibration of the Halo Mass Function



Calibration of halo mass function

E.g. for ACDM: Sheth & Tormen 2001, Jenkins+2001, Evrard+2002, Springel+2005,
Warren+2007, Reed+2007, Tinker+2008, Crocce+2010, Courtin+2011,
Bhattacharya+2011, Angulo+2012, Watson+2013, Despali+2016,

What is a universal HMFE?
n(M, 2 dM = f(v)

d lnv
M

v=6c/oM(z)

e Functional form of f(v) independent of cosmology
e Cosmology entering only through v(M,z)

Why calibrating a universal HMFE?

e Much easier to sample parameter space of cosmological
models

e No need to carry out brute-force calibration with N-body
simulations when changing cosmology



Violation of universality ....

O-Illlllllllllllllllllll 0 llllllllllllllll Tlnker+2008
; 1 2 HMF from several
} 1 simulations of WMAP1 and
1 WMAP3 cosmologies
;=125 1 = SO halo finder at
. 1 [ 4=R00 1 several values of
-3_l|1||1|1|||l|11||11|||_ —3_|1||1|||||||1|||- I I I
o Q4 FTITTTS g4 T overdensny-A (in uruts of
S 02E 308 1 mean cosmic density)
T -02F s 3o | eemguyeprant,
04 B b b by by 1304 B0 Ly o o Ly g o Ly o |3
-06-04-02 0 02 04 -02 0 02 04
log(1/0) log(1/0)

Main result: significant violation of universality, whose amount
depends on halo mass definition

Q1: can such a lack of universality be calibrated?

Q2: should this be surprising?



.... Or maybe not

1 LI llllll 1 LI llllll I 1 lé Despa|i+2016
R 37 e Homogeneous set of simulations of
Planck-concordance cosmology
’:S: 0.01 & all simulations -
Y - . .
- 0125 ¢ Universality expected to hold when
ol £x00 ) using the redshift- and cosmology-
°=0-Z58093F;g-2536 : dependent values of A predicted by
0~ Y- .
N » spherical collapse
0.4 |- o o ~
= 02 71 = HMF consistent with being
S °r —1 universal
2 T2r i within 10%
-0.4 - iy » | ]
0.1 1 10 . .
v Q1: Is universality preserved for
beyond-

ACDM cosmologies?

nnl Iﬂ :+ N llﬁf\+f\ VoV VY aul INL\ ‘f\lﬁ +L\f\



Towards a universal HMF

Planck cosmology
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Castro+2020a in
prep
* |arge suite of N-body simulations
with 10243 particles for Planck
cosmology + 2 more cosmologies:
- 11 x 1 h-1 Gpc boxes
- 11 x 2 h-* Gpc boxes
- Total of ~66 boxes
- Sheth+2001 fitting function

5\ 1/2 /
vf(v)=2A(1+L) (;—2) exp (—V—z)

v, 2p T 2

6c(z)
om(2)

V = ag Q@)% v @)=
- HMF consistent with being
universal within ~1%

- Subdominant wrt propagated
uncertainties in WL mass



Effects of baryons on the HMF { )

Cui+2015

W g2 [ 2210
SN feedback |

- Opposite effects for CSF
and AGN simulations

-=> AGN: ~20% decrease at

+ AGN feedback |

Y | o = | Mgoo=dex(13.5) h'' Mg
= - Independent of redshift

125 130 135 14.0 145 15.0 125 13.0 135 14.0 145 15.0

loQ(M")()O,DM/ (M, /h]) ZOQ(M’)()O,DM/ (M /h])

Q1: what’s the impact on cosmological constraints?

Q2: how robust is the calibration of the baryon effects on halo masses?



Effects of baryons on the HMF
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Impact on cosmological constraints Q

0.90

0.78

0.72

i

—

Planck+BAO

.

+Cluster(B,, )
+Cluster
+Cluster(BC)

|
0.250

| | |
0.275 0.300 0.325
2y

Costanzi+14

-> Planck CMB

= BAO from SDSS-DR11
(Anderson+14)

- CCCP clusters (Vikhlinin+09)
-> Massive neutrinos included
B,,: mass bias = [0.8-1]

BC: HMF baryonic correction

-> Alleviate tension with Planck
CMB

-=> Crucial to calibrate for future
surveys



Baryonic effects on the HMF

Hydro
% DM

==

103

104

MHan [1010Mo/h]

105

|

Z

0.5

104
MHan [1010M o/h]

10°

Castro+2020b in
prep

-> Use the suite of “Magneticum”
large-scale hydro simulations

-> Fit to a universal Tinker-like

HMF with more degrees of
freedom to account for
baryonic effects

HMF

- Non negligible effects on the

-> Larger than statistical
uncertainties from future (e.g.

Euclid) cluster surveys




Part I1.b:
Biases iIn Mass Measurements



- Cosmological simulations to test S
the accuracy of hydrostatic P et
equilibrium in clusters i | 4
(e.g. Rasia+06,12, Nagai+07, 057 ]
Morandi+07, Piffaretti & Valdarnini 08, |
Meneghetti+09, Lau+09,13, Kay+11, 2 ool
Suto+13, Biffi+16, Pearce+19, ’
Ansarifard+20)

0.5

VPQCLS — _pga8V® : :\\;mw
L sl 4
'1.0, L I | L I | | | | L | L L L L | )

General consensus: 10-20% 0.0 0.2 0.4 06 0.8 10
underestimate of true masses from "

HE, depending on the cluster
dynamical status

)/ Minse

(MHE‘Mt

Origins of the bias:

1. Non-thermal motions
generating a non-thermal
pressure support

2. Acceleration term in the Euler
equation
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generating a non-thermal
pressure support

2. Acceleration term in the Euler
equation




X-ray temperature bias

Q: What’s the temperature measured from an X-ray spectrum for a
plasma which is not single temperature? (Mazzotta+2004; Vikhlinin

2006)

Photons/cm? s keV

normalized counts/sec/keV

10

0.1

0.01
4]

100 1000

10

Mekal models T1=5.0 (keV) T2=10.0 (keV)

channel energy (keV)



X-ray temperature bias

Q: What’s the temperature measured from an X-ray spectrum for a
plasma which is not single temperature? (Mazzotta+2004; Vikhlinin

2006) . . o . Imoge size (orcmin )
- Inrealistic conditions, single-T &

model still a good fit to a multi-T

model
What do we measure in sim * ~ fdeV
Mass-weighted temperature: Tnw = f v
m

. . [ A(Tn*T dV
Emission-weighted T.. = .
temperature: J A(T)n*dv
Spectroscopic-like _ [WTav n?
temperature: s [wdv V=T

- Proxy of the temperature from spectral fitting,
accounting for thermal complexity of the ICM




X-ray temperature bias

e T, is aclose proxy to the

temperature obtained from
spectral fitting, in a Chandra- or
XMM-like setup

e Sizeble difference between T,
and Ty

o T, lower due to larger weight of
cooler regions

KT (keV)

radius (r,)

- Specir.-like

Chandra mock
observation

0.5
radius (arcmin)




X-ray temperature bias

e T, is aclose proxy to the

temperature obtained from 1o
spectral fitting, in a Chandra- or [ meanimedn proie
XMM:-like setup [ 3
e Sizeble difference between T,

and Ty
o T, lower due to larger weight of
cooler regions

e Small but sizeable mass-bias that 0 ——
adds to the HE bias rIRvir
e Effect dependent on the thermal

complexity of the ICM

-=> Not trivial to calibrate with
simulations



Testing the reliability of WL masses

|dealized mass reconstruction, i.e.
no observational effects included  See lectures by A.

: LI III I I | LI I_III I | | LI I: He VenS . - .
o 1 [ OMsoo. 2 6.0x10% h7Mo 2 =025 3 > Clusters identified in a
A Moooe = 2010 TG 1 large (1 Gpc/h) N-body
o oL 1 cosmological simulation
o C .
Q - ]
L ey G S G & 6K K - ) "y
01 L 1 = Spherical NFW fitting to
- | Becker & Kravtsov 11 1 tangential shear profile
= 1 I I T EEE I i T
| LI II| I | | LI III I | | L ll_
0.22 31 = 5-10% negative bias in
. 0.2 — } T ¥ - recovered masses
S 0.18 F T T =
% 016 b d == 3 - Significant bias induced
CF 1 by triaxial halo shape,
0-14 -1 correlated and

10 100 uncorrelated structures
line—of—sight integration length [h~'Mpc]



HST-WFCS3 lensing of a massive simulated cluster at z=0.25 )
- Based on the SkyLens tool (Meneghetti+08) Meneghetti+08

=> 20 clusters @ z=0.25 with
M,,> 5x1014 Mg,

-> 3 projections for each
cluster

- Generate Subaru
SuprimeCam mock lensing
observations

=> Generate Chandra mock
event files

- Quantitative assessment of
(some) observational biases




HST-WFCS3 lensing of a massive simulated cluster at z=0.25 )
- Based on the SkyLens tool Meneghetti+08

Event files from X-MAS Chandra simulator with 100 ks exp. time | g5gi5412
-> [O 7- 2] keV X- ray image (16 X 16 arcm1n2)
2o S TSNS Relaxed UL PR > 20 clusters @ z=0.25 with

k>3 projections for each
cluster

| > Generate Subaru
= SuprimeCam mock lensing
observations

“Disturbed 3453

! > Generate Chandra mock
event files

' > Quantitative assessment of
(some) observational biases

20 40 60 80 1C



Origin of X-ray mass bias

Black: My/M Red: My/M, using T . Green: M/M,,,

true true
1.2 I : !
1.0 - :
. ' - lr-!ll--'
}( l-..,.... Sees & - B
o 0.8} # ¥
U.er -
04 all

Bias in X-ray masses:

- 10-15% from violation of hydrostatic equilibrium

- ~15-20% from bias in X-ray temperature estimate (Q: simulations
reliable?)

Bias in WL masses: ~10% underestimate at R;, (also Becker & Kravtsov 11)




The Future
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SPT-3G 2500 sq.deg.

* ~16,000 receivers (~1000 in SPT-SZ)

* Frequencies: 95, 150, 220 GHz

* ~104 clusters to be detected

* Detect clusters out to z~-2 and M~1014

Me
> NOW TAKING DATA
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R /VO,zVN

SPT-3G 2500 sq.deg.

* ~16,000 receivers (~1000 in SPT-SZ)

* Frequencies: 95, 150, 220 GHz

* ~104 clusters to be detected

* Detect clusters out to z~-2 and M~1014

Me
> NOW TAKING DATA

eROSITA

* All sky-survey

» Survey speed: 4 times larger than
XMM

* PSF: 28” in survey mode

* ~105 clusters to be detected

« Secure all clusters > 1015 Mg

* Launch in Sept. 2019



» 2500 sa.desg.

Two interacting galaxy clusters, A3391 and A3395
Image 2/2, Image: T. Reiprich (Univ. Bonn), M. Ramos-Ceja (MPE), F. Pacaud (Univ. Bonn), D. Eckert (Univ. Geneva), J. Sanders (MPE), N. Ota (Univ. Bonn), E. Bulbul (MPE), V. Ghirardini (MPE), MPE/IKI

Nod
* Launch in Sept. 2019




‘ Euclid \ *1.2m mirror

R CT TRy * Optical imaging

o http/,;wwwe l-JdV]E' -.e * NIR (YJH) photometry & NIR grism
P gl YN * 15,000 sq.deg. to be covered

* Launch in 2021

* Cosmology

- * Cosmic shear

| ‘*;/%’* 0 * BAO & RSD

e . T * Galaxy clusters
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‘ Euclid \ * 1.2m mirror
o * Optical imaging
B T + NIR (YJH) photometry & NIR grism
* 15,000 sq.deg. to be covered
* Launch in 2021
* Cosmology
* Cosmic shear
* BAO & RSD

* Galaxy clusters

* 8.4m mirror

* ugrizy photometry

* ~18,000 sqg.deg. to be covered

» Operations to start in 2022

 Highly complementary to Euclid

 Similar/complementary science
cases and cosmological probes




@l The Euclid Cluster Survey

Eoald

Sartoris+2016
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The Euclid Cluster Survey

Sartoris+2016

" n(z) for N500 C/Gfleld =3
n(Z) fOf NSOO C/Gfleld =5
n(>Z) fOf NSOO C/Gfle]d =3
n(>Z) fOf NSOO C/Gfleld =5
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04
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Redshift

1.8 2

e Selection function for
photometric cluster
identification in the Euclid
wide survey (H,z<24)

e ~106 clusters to be found
o ~few x 105 at z>1

-=> Statistics not an issue!

Q: take them all, including
systematics, or select a
"golden” sample with many
fewer clusters?
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Minimum WL mass estimated with

a certain accuracy (Giocoli+18)
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M,oe min in WL with a given accuracy

z

Photometric selection function
Sartoris+2016

WL masses with Euclid

Expected no. of clusters with
WL mass at a given accuracy
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Cosmology with Euclid Clusters

Sartoris+15
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| Cosmology with Euclid Clusters

O]

DE equation of state|

Sartoris+15 W(Cl) = wy + Wa(l —Cl)

0.845 : : : : : 1

* NC+PS s | FoM =

[ +known SR 0 \/det [Cov (pi,Pj)]
0.84 f +Planck prior 7 - '

| 50 | The power of pushing to
0835 F '\.\_:.:. e " z>1; 0

| NS, 1 = About 70% of FoM from
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magnitude improvement
wrt current constraints



Take home messages

e Huge potential of galaxy clusters for cosmology!

e Cosmological simulations as useful guidelines to
-> understand and calibrate biases in mass measurements
-> assess precision and robustness of mass proxies

e Mind: observational data will tell the final word on this!

e All this under control at the level required by current surveys

e Next generation surveys require a quantum leap in the control
of all these systematics!



Take home messages ?

e Huge potential of galaxy clusters for cosmology!

e Cosmological simulations as useful guidelines to
-> understand and calibrate biases in mass measurements
-> assess precision and robustness of mass proxies

e Mind: observational data will tell the final word on this!
e All this under control at the level required by current surveys

e Next generation surveys require a quantum leap in the control
of all these systematics!

- Cluster cosmology is much more than counting
clusters!

- Lots of astrophysics to understand in the process....



