Cosmology with Galaxy Clusters: from Simulations to Euclid

Stefano Borgani Dept. of Physics - University of Trieste INAF - Astronomical Observatory of Trieste IFPU - Institute for the Fundamental Physics of the Universe -Trieste

- I. Galaxy Clusters as Tracers of Cosmic Evolution
- II. Simulations for cluster cosmology

II.a Calibration of the halo mass function

II.b Biases in mass measurements

III. The present and the future of cluster cosmology (Euclid/LSST)

https://www.ifpu.it Institute for Fundamental Physics of the Universe

The Institute for Fundamental Physics of the Universe (IFPU) is a joint initiative of the International School for Advanced Studies (SISSA), the Abdus Salam International Centre for Theoretical Physics (ICTP), the National Institute for Astrophysics (INAF) and the National Institute for Nuclear Physics (INFN). The institute aims at hosting and promoting a vigorous and innovative multi-disciplinary research program focused on investigating the fundamental laws of Nature under a Cosmological and Astrophysical perspective.

NEWS

IFPU Colloquia starting on March 21, 2019

The program of Colloquia, Seminars and Journal Clubs at the Institute for Fundamental Physics of the Universe is starting. You can find the calendar and details on IFPU scientific events at the Activities webpage.

ANNOUNCEMENTS

Call for IFPU programs now open

The Institute for Fundamental Physics of the Universe supports and hosts: Focus Week Programs, namely small-scale thematic workshops, and Team Research Programs, namely the activity of small groups developing or finalizing a project. Calls for Read more...

ANNOUNCEMENTS

Applications for long-term visits now open (first deadline: May 1, 2019)

The Institute promotes its internationalization and the development of new research lines through visits of internationally renowned scientists with leading expertise in areas within the scientific goals of the Institute. The next deadline for receiving Read more...

Part I: Clusters as tracers of cosmic evolution

What is a galaxy cluster ?

Concentrations of ~10³ galaxies $\sigma_v \sim 500-1000 \text{ km s}^{-1}$ Size: ~1-2 Mpc Mass: ~10¹⁴-10¹⁵ M $\rightarrow \lambda_i \approx 10 \text{ Mpc}$

What is a galaxy cluster ?

Concentrations of ~10³ galaxies $\sigma_v \sim$ 500-1000 km s⁻¹ Size: ~1-2 Mpc Mass: ~1014-1015 M → $\lambda_i \approx 10$ Mpc -Baryon content: \rightarrow cosmic share (~15%) in hydrostatic equilibrium ICM temperature: T ~ 2-10 keV \rightarrow fully ionized plasma; \rightarrow Thermal bremsstrahlung n_e~10⁻²-10⁻⁴ cm⁻³ \rightarrow $L_{x} \sim n_{e}^{2} V \sim 10^{45} \text{ erg s}^{-1}$ \rightarrow

Sunyaev-Zeldovich Effect

Sunyaev-Zeldovich Effect

- Signal virtually independent of redshift
- → Proportional to the l.o.s. integration of $n_e T_e \sim pressure$
- → Wider dynamic range accessible
- → We are now in the era of SZ cluster cosmology (e.g. ACT, SPT, Planck)

Coma as seen by Planck

Galaxy Clusters & Cosmic Growth

A CALL AND A CALL AND

One-to-one relationship between expansion and growth

Traced by the evolution of the cluster population

$$\frac{dN(X;z)}{dXdz} = \frac{dV}{dz} f(X,z) \int_{0}^{\infty} \frac{dn(M,z)}{dM} \frac{dp(X \mid M,z)}{dX} dM \xrightarrow{\rightarrow} \text{No. of clusters of given} \\ \text{observable X and z} \\ \text{within} \\ \text{the survey area} \end{cases}$$

$$\frac{dN(X;z)}{dXdz} = \frac{dV}{dz} f(X,z) \int_{0}^{\infty} \frac{dn(M,z)}{dM} \frac{dp(X|M,z)}{dX} dM \xrightarrow{\rightarrow} \text{No. of clusters of given observable X and z within the survey area}$$
1. Friedmann background:
$$\frac{dV}{dz} \xrightarrow{\rightarrow} \text{Priors from CMB, BAO, SN-Ia, } \dots$$

$$\frac{dN(X;z)}{dXdz} = \frac{dV}{dz} f(X,z) \int_{0}^{\infty} \frac{dn(M,z)}{dM} \frac{dp(X \mid M,z)}{dX} dM \xrightarrow{\rightarrow} \text{No. of clusters of given observable X and z within the survey area}$$
1. Friedmann background:
$$\frac{dV}{dz} \xrightarrow{\rightarrow} \text{Priors from CMB, BAO, SN-Ia,}$$

2. Selection function: $f(X, z) \rightarrow Observational strategy$

$$\frac{dN(X;z)}{dXdz} = \frac{dV}{dz} f(X,z) \int_{0}^{\infty} \frac{dn(M,z)}{dM} \frac{dp(X|M,z)}{dX} dM \xrightarrow{\rightarrow} \text{No. of clusters of given observable X and z within the survey area}$$
1. Friedmann background:
$$\frac{dV}{dz} \xrightarrow{\rightarrow} \text{Priors from CMB, BAO, SN-Ia, ...}$$
2. Selection function: $f(X,z) \xrightarrow{\rightarrow} \text{Observational strategy}$
3. Growth history and nature of perturbations:
$$\frac{dn(M,z)}{dM} \xrightarrow{\rightarrow} \text{Precisely calibrated with N-body simulations}$$

$$\frac{dN(X;z)}{dXdz} = \frac{dV}{dz} f(X,z) \int_{0}^{\infty} \frac{dn(M,z)}{dM} \frac{dp(X|M,z)}{dX} dM \xrightarrow{\rightarrow} \text{No. of clusters of given observable X and z within the survey area}$$
1. Friedmann background:
$$\frac{dV}{dz} \xrightarrow{\rightarrow} \text{Priors from CMB, BAO, SN-Ia,}$$
2. Selection function: $f(X,z) \xrightarrow{\rightarrow} \text{Observational strategy}$
3. Growth history $\frac{dn(M,z)}{dM} \xrightarrow{\rightarrow} \text{Precisely calibrated with N-body simulations}}$
4. Astrophysics: $p(X|M,z) \xrightarrow{\rightarrow} \text{Priors on "nuisance parameters" } p_j$ from follow-up observations and/or cosmological simulations

Halo Mass Function

 $n(M, z)dM = \frac{\rho}{M^2} f(v) \frac{d \ln v}{d \ln M} dM$

 $V = \delta_c / \sigma_M(Z) \delta_c$: linear critical density

collapse

 $\sigma_{M}^{2}(z) = \frac{D^{2}(z)}{2\pi^{2}} \int_{0}^{\infty} dk \ k^{2} P(k) W_{M}^{2}(k) \rightarrow \text{Mass variance at the scale M and} \\ \text{redshift } z \text{ for the filter function } W_{M}(k).$

 $D(z, k) = D(\Omega_m, \Omega_{DF'}, \Omega_v, w, ...)$: linear growth rate of density fluctuations

$$v f(v) = \left(\frac{v}{2\pi}\right)^{1/2} e^{-v/2} \rightarrow \text{Press & Schechter 74}$$

constrast for spherical

$$v f(v) = A \left[1 + \frac{1}{(av)^{p}} \right] \left(\frac{av}{2\pi} \right)^{1/2} e^{-av/2} \rightarrow \text{Sheth & Tormen 99}$$

(*A*, *a*, *p*): fitting parameters from N-body

Cluster Cosmology ~20 yrs ago

SB et al. '01; Rosati, SB & Norman '02

- ~100 clusters identified from ROSAT PSPC pointings
- Only X-ray luminosity available

Planck CMB & clusters

Planck collab. 2013 XX

Number counts for 189 Planck-SZ clusters

- X-ray (XMM) calibrated mass scaling
- →Tension with Planck primary CMB
- **b=0.2** (HE mass bias): suggested by simulations
- Agreement with constraints from:
 - Planck-y map
 - Other cluster counts
 - Cosmic shear

Cluster cosmology as of today

Costanzi+2018: abundance and weak-lensing of RedMapper clusters from SDSS (z=0.1-0.3)

~7000 clusters used

 $S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5} = 0.79^{+0.05}_{-0.04}$

→ No evidence of tension with CMB constraints and constraints from other cluster catalogues

Cluster cosmology as of today

SZ surveys

Bocquet+2018: cluster counts in the SPT-SZ survey (z=0.25-1.75)

- → 377 clusters used, supplemented by HST+Magellan WL mass and Chandra X-ray observations
- → Allow neutrino mass to be a free $\Omega_{\rm m} = 0.276 \pm 0.047$

$$\sigma_8 = 0.781 \pm 0.037$$

Test of growth of structure in agreement with GR

Part II: Simulations for cluster cosmology

What simulations are used for?

→ Evolve cosmic structures from initial conditions set by CMB observations

Why simulations of clusters?

→ Impact of astrophysical processes in determining the observational properties of clusters

→ Understand systematics and biases in the calibration of clusters as tools for cosmology

What simulations are used for?

→ Evolve cosmic structures from initial conditions set by CMB observations

Why simulations of clusters?

→ Impact of astrophysical processes in determining the observational properties of clusters

→ Understand systematics and biases in the calibration of clusters as tools for cosmology

What simulations are used for?

→ Evolve cosmic structures from initial conditions set by CMB observations

Why simulations of clusters?

→ Impact of astrophysical processes in determining the observational properties of clusters

→ Understand systematics and biases in the calibration of clusters as tools for cosmology

Large-scale hydrodynamic simulations

"Magneticum" Dolag+2015 www.magneticum.org

"Illustris-TNG300"

Vogelsberger+2017 www.tng-project.org "Bahamas"

McCarthy+2017 http://

www.astro.ljmu.ac.uk/ ~igm/BAHAMAS/ "Horizon"

https://www.horizonsimulation.org

Zoom-in simulations

Dianoga simulations Rasia et al. 2015

→ "The 300" project
 Cui et al. 2018

MACSIS simulations Barnes et al. 2017

Hydrangea/C-EAGLE Bahè et al. 2018

→ FABLE
Henden et al. 2019

Zoom-in simulations

- → 140 halos with M_{vir} >5 x 10¹³ h⁻¹ M_☉
- → Hydro (Beck+15): Gadget-3 SPH +
- Higher-order kernel
- "Wake-up" scheme for time-step of gas particles
- Time-dependent artificial viscosity
- Artificial conduction

→ Astrophysics:

- Cooling + SF + SN feedback (Springel & Hernquist 03)
- Chemical enrichment (Tornatore+07)
- AGN feedback (Steinborn+15)

BH scaling relations

Bassini+19 Bassini+20 ; in

 M_{BH} -M* relation to calibrate feedback parameters Observations from: McConnell & Ma 2013 Main+2017 (M_{BH} from Kband luminosity)

BH scaling relations

Bassini+19 Bassini+20 ; in

M_{BH}-M^{*} relation to calibrate feedback parameters Observations from: McConnell & Ma 2013 Main+2017 (M_{BH} from Kband luminosity)

→Relationship with general
 ICM properties
 (temperature) also
 reproduced
 Observations from:
 Gaspari+2019

BH scaling relations

Bassini+19 Bassini+20 ; in

M_{BH}-M_{*} relation to
calibrate feedback
parameters
Observations from:
McConnell & Ma 2013
Main+2017 (M_{BH} from K-band luminosity)

→Relationship with general
 ICM properties
 (temperature) also
 reproduced
 Observations from:
 Gaspari+2019

Part II.a: Calibration of the Halo Mass Function

Calibration of halo mass function

E.g. for ΛCDM: Sheth & Tormen 2001, Jenkins+2001, Evrard+2002, Springel+2005, Warren+2007, Reed+2007, Tinker+2008, Crocce+2010, Courtin+2011, Bhattacharya+2011, Angulo+2012, Watson+2013, Despali+2016,

What is a universal HMF?

$$\frac{d \ln v}{M} = \frac{\overline{\rho}}{M^2} f(v) \frac{d \ln v}{d \ln M} dM$$
$$V = \delta_c / \sigma_M(Z)$$

- Functional form of f(v) independent of cosmology
- Cosmology entering only through v(M,z)

Why calibrating a universal HMF?

- Much easier to sample parameter space of cosmological models
- No need to carry out brute-force calibration with N-body simulations when changing cosmology

Violation of universality

Main result: significant violation of universality, whose amount depends on halo mass definition

- Q1: can such a lack of universality be calibrated?
- Q2: should this be surprising?

.... or maybe not

Despali+2016

- Homogeneous set of simulations of Planck-concordance cosmology
- Universality expected to hold when using the redshift- and cosmologydependent values of *A* predicted by spherical collapse
- → HMF consistent with being universal within 10%

Q1: Is universality preserved for beyond-

 Λ CDM cosmologies?

Op la it accurate anough for the

Towards a universal HMF

Castro+2020a in

Large suite of N-body simulations with 1024³ particles for Planck cosmology + 2 more cosmologies: - 11 x 1 h⁻¹ Gpc boxes

- 11 x 2 h⁻¹ Gpc boxes
- Total of ~66 boxes

Sheth+2001 fitting function

$$vf(v) = 2A\left(1 + \frac{1}{v'^{2}p}\right)\left(\frac{v'^{2}}{2\pi}\right)^{1/2}\exp\left(-\frac{v'^{2}}{2}\right)$$
$$v' = a_{0}\Omega_{m}(z)^{a_{z}}v \qquad v(z) \equiv \frac{\delta_{c}(z)}{\sigma_{M}(z)}$$

- → HMF consistent with being universal within ~1%
- Subdominant wrt propagated uncertainties in WL mass

Effects of baryons on the HMF

Cui+2015

→ Opposite effects for CSF and AGN simulations

→ AGN: ~20% decrease at M₅₀₀=dex(13.5) h⁻¹ M_☉

→ Independent of redshift

Q1: what's the impact on cosmological constraints?

Q2: how robust is the calibration of the baryon effects on halo masses?

Effects of baryons on the HMF

Impact on cosmological constraints

Planck+BAO +Cluster(B_M) 0.90 +Cluster +Cluster(BC) 0.84 σ_8^{0} 0.78 0.72 0.300 0.325 0.250 0.275

 4 m

Costanzi+14

- → Planck CMB
- → BAO from SDSS-DR11 (Anderson+14)
- → CCCP clusters (Vikhlinin+09)
- → Massive neutrinos included
- B_{M} : mass bias = [0.8-1]
- **BC: HMF baryonic correction**
- Alleviate tension with Planck CMB
- Crucial to calibrate for future surveys

Baryonic effects on the HMF

Castro+2020b in prep

- → Use the suite of "Magneticum" large-scale hydro simulations
- → Fit to a universal Tinker-like HMF with more degrees of freedom to account for baryonic effects
- Non negligible effects on the HMF
- → Larger than statistical uncertainties from future (e.g. Euclid) cluster surveys

Part II.b: Biases in Mass Measurements

Masses from hydrostatic

→ Cosmological simulations to test the accuracy of hydrostatic equilibrium in clusters (e.g. Rasia+06,12, Nagai+07, Morandi+07, Piffaretti & Valdarnini 08, Meneghetti+09, Lau+09,13, Kay+11, Suto+13, Biffi+16, Pearce+19, Ansarifard+20)

$$\nabla P_{gas} = -\rho_{gas} \nabla \Phi$$

<u>General consensus:</u> 10-20% underestimate of true masses from HE, depending on the cluster dynamical status

Origins of the bias:

- 1. Non-thermal motions generating a non-thermal pressure support
- 2. Acceleration term in the Euler equation

Masses from hydrostatic

→ Cosmological simulations to test the accuracy of hydrostatic equilibrium in clusters (e.g. Rasia+06,12, Nagai+07, Morandi+07, Piffaretti & Valdarnini 08, Meneghetti+09, Lau+09,13, Kay+11, Suto+13, Biffi+16, Pearce+19, Ansarifard+20)

$$\nabla P_{gas} = -\rho_{gas} \nabla \Phi$$

<u>General consensus:</u> 10-20% underestimate of true masses from HE, depending on the cluster dynamical status

Origins of the bias:

- 1. Non-thermal motions generating a non-thermal pressure support
- 2. Acceleration term in the Euler equation

Allow of the state of the state

Q: What's the temperature measured from an X-ray spectrum for a plasma which is not single temperature? (Mazzotta+2004; Vikhlinin 2006)

Q: What's the temperature measured from an X-ray spectrum for a plasma which is not single temperature? (Mazzotta+2004; Vikhlinin 2006)

2006) → In realistic conditions, single-T model still a good fit to a multi-T model

What do we measure in sim Mass-weighted temperature:

$$T_{\rm mw} \equiv \frac{\int mT \, \mathrm{d}V}{\int m \, \mathrm{d}V}$$

Emission-weighted temperature:

$$T_{\rm ew} \equiv \frac{\int \Lambda(T) n^2 T \, \mathrm{d}V}{\int \Lambda(T) n^2 \, \mathrm{d}V}$$

Spectroscopic-like temperature:

$$T_{\rm sl} = \frac{\int WT \,\mathrm{d}V}{\int W \,\mathrm{d}V} \quad W = \frac{n^2}{T^{3/4}}$$

→ Proxy of the temperature from spectral fitting, accounting for thermal complexity of the ICM

ANDIAN OF A CONTRACT OF A CONT

- T_{sl} is a close proxy to the temperature obtained from spectral fitting, <u>in a Chandra- or</u> <u>XMM-like setup</u>
- Sizeble difference between T_{ew} and T_{sl}
- T_{sl} lower due to larger weight of cooler regions

- T_{sl} is a close proxy to the temperature obtained from spectral fitting, <u>in a Chandra- or</u> <u>XMM-like setup</u>
- Sizeble difference between T_{ew} and T_{sl}
- T_{sl} lower due to larger weight of cooler regions
- Small but sizeable mass-bias that adds to the HE bias
- Effect dependent on the thermal complexity of the ICM
- Not trivial to calibrate with simulations

Testing the reliability of WL masses

See lectures by A.

- Heavens Clusters identified in a large (1 Gpc/h) N-body cosmological simulation
- → Spherical NFW fitting to tangential shear profile
- → 5-10% negative bias in recovered masses

→ Significant bias induced by triaxial halo shape, correlated and uncorrelated structures

X-ray and WL masses

HST-WFC3 lensing of a massive simulated cluster at z=0.25
→ Based on the SkyLens tool (Meneghetti+08)

→ 20 clusters @ z=0.25 with M₂₀₀> 5x10¹⁴ M_☉

→ 3 projections for each cluster

→ Generate Subaru SuprimeCam mock lensing observations

→ Generate Chandra mock event files

→ Quantitative assessment of (some) observational biases

X-ray and WL masses

HST-WFC3 lensing of a massive simulated cluster at z=0.25
 → Based on the SkyLens tool (Meneghetti+08)

Meneghetti+08

Rasia+12

Event files from X-MAS Chandra simulator with 100 ks exp. time
 → [0.7-2] keV X-ray image (16 x 16 arcmin²)

→ 20 clusters @ z=0.25 with M_{200} > 5x10¹⁴ M_☉

→ 3 projections for each cluster

→ Generate Subaru SuprimeCam mock lensing observations

→ Generate Chandra mock event files

→ Quantitative assessment of (some) observational biases

Origin of X-ray mass bias

Black: M_x/M_{true}

Red: M_x/M_{true} using T_{mw}

Bias in X-ray masses:

- → 10-15% from violation of hydrostatic equilibrium
- \rightarrow ~15-20% from bias in X-ray temperature estimate (Q: simulations) reliable?)

Bias in WL masses: ~10% underestimate at R₅₀₀ (also Becker & Kravtsov 11)

The Future

SPT-3G

- 2500 sq.deg.
- ~16,000 receivers (~1000 in SPT-SZ)
- Frequencies: 95, 150, 220 GHz
- ~10⁴ clusters to be detected
- Detect clusters out to $z{\sim}2$ and $M{\sim}10^{14}$ M_{\bigodot}
- → NOW TAKING DATA

SPT-3G

- 2500 sq.deg.
- ~16,000 receivers (~1000 in SPT-SZ)
- Frequencies: 95, 150, 220 GHz
- ~10⁴ clusters to be detected

eROSITA

- Detect clusters out to $z{\sim}2$ and $M{\sim}10^{14}$ M_{\bigodot}
- → NOW TAKING DATA

- All sky-survey
- Survey speed: 4 times larger than XMM
- PSF: 28" in survey mode
- ~10⁵ clusters to be detected
- Secure all clusters > 10¹⁵ M_☉
- Launch in Sept. 2019

SPT-3G

• 2500 sa.deg.

Two interacting galaxy clusters, A3391 and A3395

Image 2/2, Image: T. Reiprich (Univ. Bonn), M. Ramos-Ceja (MPE), F. Pacaud (Univ. Bonn), D. Eckert (Univ. Geneva), J. Sanders (MPE), N. Ota (Univ. Bonn), E. Bulbul (MPE), V. Ghirardini (MPE), MPE/IKI

• Launch in Sept. 2019

Euclid

An artist view of the Euclid Satellite – © ESA

- 1.2m mirror
- Optical imaging
- NIR (YJH) photometry & NIR grism
- 15,000 sq.deg. to be covered
- Launch in 2021
- <u>Cosmology</u>
 - Cosmic shear
 - BAO & RSD
 - Galaxy clusters

Euclid

An artist view of the Euclid Satellite – © ESA

- 1.2m mirror
- Optical imaging
- NIR (YJH) photometry & NIR grism
- 15,000 sq.deg. to be covered
- Launch in 2021
- <u>Cosmology</u>
 - Cosmic shear
 - BAO & RSD
 - Galaxy clusters

- 8.4m mirror
- ugrizy photometry
- ~18,000 sq.deg. to be covered
- Operations to start in 2022
- Highly complementary to Euclid
- Similar/complementary science cases and cosmological probes

The Euclid Cluster Survey

Sartoris+2016 15.0 14.8 14.6 log([∛] _{200,c}∕M₀) 14.4 14.2 14.0 3σ 13.8 13.6 0.5 1.0 1.5 2.0 redshift

 Selection function for photometric cluster identification in the Euclid wide survey (H_{AB}<24)

The Euclid Cluster Survey

Sartoris+2016

- Selection function for photometric cluster identification in the Euclid wide survey (H_{AB}<24)
- ~10⁶ clusters to be found
- ~few x 10⁵ at z>1
- → Statistics not an issue!

Q: take them all, including systematics, or select a "golden" sample with many fewer clusters?

WL masses with Euclid

Take home messages

- Huge potential of galaxy clusters for cosmology!
- Cosmological simulations as useful guidelines to
 Junderstand and calibrate biases in mass measurements
 Jassess precision and robustness of mass proxies
- <u>Mind</u>: observational data will tell the final word on this!
- All this under control at the level required by current surveys
- Next generation surveys require a quantum leap in the control of all these systematics!

Take home messages

- Huge potential of galaxy clusters for cosmology!
- Cosmological simulations as useful guidelines to
 Junderstand and calibrate biases in mass measurements
 Jassess precision and robustness of mass proxies
- <u>Mind</u>: observational data will tell the final word on this!
- All this under control at the level required by current surveys
- Next generation surveys require a quantum leap in the control of all these systematics!
- Cluster cosmology is much more than counting clusters!
- → Lots of astrophysics to understand in the process....