

Turbulent plasmas as high-energy particle accelerators

Martin Lemoine Astroparticule & Cosmologie (APC) CNRS – Université Paris Cité

Collaborators:

Virginia Bresci (PhD 2022, Focus Energy), Camilia Demidem (PhD 2019, RIKEN), Arno Vanthieghem (PhD 2019, Obs. Paris), Laurent Gremillet (CEA/DAM),

+ A. Bykov (loffe), L. Comisso (Columbia U.), M. Malkov (UCSD), K. Murase (Penn State), G. Pelletier (IPAG), F. Rieger (MPIPP), L. Sironi (Columbia U.)

Physics of particle acceleration: a cornerstone of high-energy multi-messenger astrophysics

 $\rightarrow \nu - \gamma - CR$ connection: acceleration of ions \rightarrow cosmic rays, photons and neutrinos \rightarrow what are the accelerating machine(s) and the acceleration process(es) at work ?

Diffuse background spectra in gamma-rays, neutrinos and cosmic rays 10^{-6} S GeV-TeV PeV EeV neutrino bckgd ī gamma-ray bckgd cosmic ray bckqd $E^2 \times \Phi$ [GeV cm⁻² s⁻¹ 10^{-7} 10^{-8} 10⁻⁹ © Ice Cube, Ahlers + Halzen 17 10¹⁰ 10³ 10^{4} 10⁵ 10⁶ 107 10⁸ 10⁹ 10^{11} 10 100 Energy [GeV]

Particle acceleration in the high-energy Universe

→ a key problem for particle acceleration in astrophysical plasmas: high conductivity implies small electric fields... in practice $E \sim 0$ everywhere on length/time scales of interest

e.g., ion plasma time scale: $1/\omega_{
m pi} \sim 10^{-3}\,{
m s}~n_0^{-1/2}$

\rightarrow Fermi's solution (1949):

E = 0 in plasma rest frame, but $E = -v_E \times B/c$ in magnetized plasmas moving at v_E .

 \Rightarrow particles can gain energy from motional electric fields (more precisely: differences in E, v_E)

e.g.: acceleration at shock waves, in turbulent plasmas etc.

Shock waves as particle accelerators in HE astrophysics: the standard scheme

- \rightarrow particle acceleration in MHD flows:
 - ... particles draw energy from electric field carried by plasma (ideal Ohm's law): $E = -v_E \times B/c$
 - ... often picture as kinematics of interactions back and forth across shock front...
 - ... shapes spectrum $dn/d\epsilon \propto \epsilon^{-2...}$

Stochastic particle acceleration in astrophysics

→ stochastic Fermi acceleration¹: particles interact with random motional electric fields (← random velocity and magnetic fields in a turbulent plasma)

... a key question: how to describe stochastic acceleration in random electric fields...

... a well-known signature: hard spectra = most of the energy at the highest energies...

Fermi stochastic acceleration: a standard acceleration scheme in astrophysics

... in extra-galactic jets ($v_A \sim 0.1c$)...

... in pulsar wind nebulae ($v_A \sim 0.1 - 1 c$)...

... acceleration near black holes ($v_A \sim 0.1 - 1 c$)...

... key parameter: velocity of largest eddies $v_E \sim v_A$

... long-standing issues:

detailed acceleration mechanism? ... consequences? ... acceleration in relativistic regime $(v_A \sim c)$?

... a non-linear (particles ↔ fields), multi-scale problem...

Stochastic/Fermi-II acceleration – kinematics of interactions

 \rightarrow a stochastic process: particles interact with discrete, randomly moving magnetized structures carrying $E = -v_E \times B/c$

 \rightarrow in detail: Lorentz transform to structure rest frame and back, elastic scattering gives energy change / interaction:

 $\begin{array}{c} & & \Delta \epsilon / \epsilon = \gamma_E^2 \left(1 + \boldsymbol{v_E} \cdot \boldsymbol{v'} / c^2 \right) \left(1 - \boldsymbol{v_E} \cdot \boldsymbol{v} / c^2 \right) - 1 \simeq \pm O(v_E / c) \\ & \text{``net energy gain because more head-on than tail-on collisions...''} \end{array}$

 \rightarrow a diffusive process characterized by energy diffusion coefficient: D_{ϵ}

$$\epsilon_{\epsilon\epsilon} \equiv \frac{\langle \Delta \epsilon^2 \rangle}{\Delta t} \sim \epsilon^2 \frac{(v_E/c)^2}{t_{\rm int}}$$

... in practice, assume diffusion coefficient and use Fokker-Planck:

$$\frac{\partial}{\partial t}f(p,t) = \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2 D_{pp} \frac{\partial}{\partial p}f(p,t)\right]$$

 \rightarrow some open questions: is this the true acceleration process, what about wave-particle resonant interactions? how to generalize Fermi to turbulence, where where v_F = continuous random field with power on all scales?

Numerical studies of particle acceleration in collisionless magnetized turbulence

 \rightarrow a non-linear, multi-scale problem:

... e.g. in turbulence: a fully nonlinear interplay between particles and e.m. fields...

 \Rightarrow HPC numerical simulations¹

© V. Bresci, L. Gremillet, M. L.: 2D PIC, driven turb., e⁺e⁻, 10 000²,

Refs: 1. fully kinetic (PIC): Zhdankin+17,18,20,... Wong+ 19, Comisso+Sironi 18, 19, Nättilä + Beloborodov 20, ... Groselj+23 MHD/hybrid sims: Dmitruk+03, Arzner+06, ..., Isliker+17, Pecora+18, Trotta+20, Pezzi+22

Insights from particle tracking in MHD numerical simulations

 \rightarrow MHD / hybrid simulations¹ of magnetized turbulence + particle tracking:

... for fast (~ exponential!) acceleration in localized regions ...

... non-trivial energy distributions (~not simple Fokker-Planck) ...

Insights from fully kinetic numerical simulations

 \rightarrow PIC simulations¹ of particle acceleration in semi- to fully-relativistic (Alfvén $v_A \gtrsim 0.1 c$), collisionless turbulence:

 \rightarrow unexpected² emergence of powerlaws, $dn/dp \propto p^{-s}$ with $s \sim 2 \dots 4$, signature of a rich phenomenology...

 \rightarrow in relativistic regime, diffusion coefficient $D_{pp} \sim 0.2 \sigma p^2 c/l_c$ (scaling w/ Alfven 4-velocity)

Refs: 1. Zhdankin+17,18,20, ... Wong+ 19, Comisso+Sironi 18, 19, Nättilä + Beloborodov 20, Vega+20, ... Bresci+22 + many MHD/hybrid (Dmitruk+03, Arzner+06, ..., Isliker+17, Trotta+19, Pezzi+22, Pugliese+23)
2. discussion in M.L. + Malkov 20

Generalized Fermi acceleration in a random velocity flow

 \rightarrow Generalized Fermi model¹:

... scheme = track particle momentum along particle word line in the (non-inertial) frame moving at v_E

$$\frac{\mathrm{d}\epsilon'}{\mathrm{d}\tau} = -\Gamma_{a\,b}^0 \frac{{p'}^a {p'}^b}{m} = -e_a{}^\mu e_b{}^\nu u_{E\mu,\nu} \frac{{p'}^a {p'}^b}{m} \qquad \text{(vs } d\epsilon/dt = q \ \boldsymbol{\nu} \cdot \boldsymbol{\delta}\boldsymbol{E} \text{ in lab frame)}$$

... motivations:

- *E* vanishes in frame moving at $v_E = c E \times B/B^2 \Rightarrow$ particles are accelerated by visiting regions of different $v_E \leftrightarrow$ acceleration controlled by gradients of v_E [= velocity of magnetic field lines]
- scheme connects $\Delta \epsilon'$ to inertial corrections \leftrightarrow gradients of u_E ($u_E \equiv \gamma_E v_E$ 4-velocity)
- direct generalization of Fermi process (boost to reference frame of scattering center)

... benefits:

- connection to velocity structures: on scale $l \gtrsim r_g$, regions with net gradient of v_E
- fully covariant implementation of Fermi acceleration in turbulence, non perturbative scheme
- diffusion coefficient $\propto (u_E/c)^2$ validated by numerical sims, while $\propto (v_E/c)^2$ expected from wave-particle interactions³
- Refs: 1. M.L. 19 [PRD 99, 083006 (2019)], 21 [PRD 104, 063020 (2021)]; see also previous works by Webb 85, 89
 2. other studies in turbulence: Bykov+Toptygin 83, Ptuskin 88, Chandran+Maron 04, Cho+Lazarian 06, Ohira 13, Brunetti+Lazarian 16, ...
 3. Demidem, ML, Casse 20

Effective model describing Fermi acceleration in magnetized turbulence

 \rightarrow effective model¹:

$$\frac{\mathrm{d}\epsilon'}{\mathrm{d}\tau} = -\frac{{p'}^a {p'}^b}{m} e_a{}^\mu e_b{}^\nu u_{E\mu,\nu} \left[\boldsymbol{x}(t), t \right]$$

... decomposition of $u_{E_{\mu,\nu}} \Rightarrow$ particle accelerated in regions of compression and shear (mostly)

... stochastic differential equation: random force = gradients of u_E ... integrate to obtain advection + diffusion coefficients ... model captures all forms of non-resonant acceleration (in ideal fields) ...

 \rightarrow examples on different scales (small to large):

Refs: 1. M.L. 19 [PRD 99, 083006 (2019)], M.L. 21 [PRD 104, 063020 (2021)], M.L. 22 [PRL 129, 215101 (2022)], M.L. 25 [arXiv:]

Application to strong turbulence: $\delta B \gtrsim B$, dominant contribution from curved field lines

 \rightarrow theoretical model¹: $\dot{p} = \Gamma_l p$ (simplified expression in comoving frame)

with Γ_l a random field: gradients of v_E coarse-grained on scale $l \gtrsim r_g$...

 Γ_l from dynamic curved field lines, or dynamic perp. gradients (mirrors), or acceleration of field lines

Map of $\ln |\Gamma_l|$ in MHD 1024³ sim.² (no guide field: large-amplitude turb.)

\rightarrow Properties of the random force:

- ... (exponential) energy gain if $\Gamma_l > 0$, loss if $\Gamma_l < 0$
- ... Γ_l is non-Gaussian, highly localized in specific regions... (in large-amplitude turbulence)
- ... different particles experience different histories \Rightarrow powerlaw spectrum

A transport model reproducing spectra obtained by particle tracking in MHD simulation

\rightarrow comparison to numerical data:

- 1. fit model (here 2: blue & red) to p.d.f. of forces (Γ_l)
- 2. integrate kinetic equation¹
- 3. compare to distribution measured in MHD 1024³ simulation² by time-dependent particle tracking...

 \Rightarrow model reproduces time- and energy- dependent Green functions... + produces powerlaw spectra $dn/dp \propto p^{-4}$

2. no guide field - Eyink+13, JHU database

Some perspectives and phenomenological consequences

\rightarrow executive summary:

... acceleration in turbulent plasmas can be described as a generalized Fermi process: model supported by
 PIC+MHD simulations ... ⇔ acceleration through exploration of random velocity flows (shear and compression)
 + a generalized Fermi transport equation in strong turbulence ...

→ some consequences:

... statistics of sharp bends of field lines in strong turbulence: can contribute to spatial transport as well, m.f.p. comparable to naive prediction of quasi-linear theory ...

... acceleration is fast (exponential) in localized regions, e.g. trapping of particles in compressive fluctuations, diffusion in momentum is heterogeneous ...

- ... phenomenological consequences: powerlaw spectra are generic ...
- ... in relativistic turbulence, fast acceleration, local Lorentz boosts → distorted + non-isotropic radiative spectra

→ many open questions and perspectives:

... in-depth understanding of acceleration, origin of spectra vs turbulence conditions \rightarrow application to different sources

... turbulent acceleration combined with radiative losses \rightarrow radiative (+polarized) spectra?

... extrapolation to large timescales ? (a strong limit of current numerical simulations)

... derive recipes to implement generalized Fermi acceleration in MHD/GRMHD simulations (acceleration in complex velocity flows)

Evolution on ``long'' timescales: from simulations to astrophysical objects

... important:

 \rightarrow limited duration of simulations:

- (1) stochastic acceleration is diffusion + advection in momentum space...
- (2) final spectrum depends on injection history + whether turbulence is sustained or not ("decaying")
- (3) high-energy particles take most of the energy... until they exhaust the turbulence that feeds them!

Evolution on ``long" timescales: accelerated particles can modify the turbulence structure...

 \rightarrow particle acceleration in turbulence, up to feedback¹:

- ... acceleration = loss of energy for turbulence + most of energy given to highest energy particles
- ... higher energy particles \leftrightarrow larger mean free path \leftrightarrow source of viscosity + diffusivity
- ⇒ consequences: (1) self-regulation of acceleration impacts distribution function $f(\epsilon, t)$ (2) removes turbulent power on short scales, modifies plasma heating rate (3) pressure in accelerated particles can become comparable to plasma pressure

Refs.: 1. Eichler 79, Eilek 79, ... Kakuwa 16 ..., M.L., Murase, Rieger 24

Stochastic Fermi acceleration & high-energy neutrinos from NGC 1068

→ Ice Cube 22: excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068... ... a possible scenario: stochastic acceleration in turbulent corona + $p - \gamma$ neutrino production¹

→ model²: integrate spectra through transport eqn... ... including relevant energy losses

 \rightarrow p acceleration to >100TeV possible for turbulent Alfvén velocity $v_{\rm A}~\gtrsim 0.1c$

- \rightarrow issue: ad-hoc normalization of the flux...
- ... particle feedback on turbulence appears unavoidable

Refs.: 1. e.g. Murase 22 + refs.,... Padovani+24

Stochastic Fermi acceleration & high-energy neutrinos from NGC 1068

→ Ice Cube 22: excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068... ... a possible scenario: stochastic acceleration in turbulent corona + $p - \gamma$ neutrino production¹

→ model²: integrate spectra through transport eqn... ... including relevant energy losses

... proper account of feedback of particles on turbulence (damping) \Rightarrow reasonable fit to Ice Cube data, without fine-tuning of normalization...

Refs.: 1. e.g. Murase 22 + refs.,... Padovani+24

Summary + discussion: generalized Fermi acceleration in turbulent plasmas

→ Summary (1): particle acceleration in turbulence as generalized Fermi process

... Fermi acceleration generalized to turbulence: acceleration in localized regions of strong (field line) velocity gradients ... model supported by PIC+MHD simulations ...

→ Summary (2): application to phenomenology of Ice Cube neutrinos from Seyferts

... (generalized Fermi) transport equation allows to model spectra ...

... an important effect in (many) sources: account for feedback of particles on turbulence... acceleration process becomes self-regulated