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Physics of particle acceleration: a cornerstone of high-energy multi-messenger astrophysics

— v — ¥ — CR connection: acceleration of ions — cosmic rays, photons and neutrinos
— what are the accelerating machine(s) and the acceleration process(es) at work ?
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Particle acceleration in the high-energy Universe
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— a key problem for particle acceleration in astrophysical plasmas:
high conductivity implies small electric fields... in practice E ~ 0
everywhere on length/time scales of interest

. : _ —1/2
e.g., ion plasma time scale: 1/wy; ~ 10 33 ng /

— Fermi’s solution (1949):

E = 0in plasma rest frame, but E = —vg X B/c in magnetized
plasmas moving at v .

= particles can gain energy from motional electric fields
(more precisely: differences in E, V)

e.g.: acceleration at shock waves, in turbulent plasmas etc.



Shock waves as particle accelerators in HE astrophysics: the standard scheme

— particle acceleration in MHD flows:
... particles draw energy from electric field carried by plasma (ideal Ohm’s law): E = —vg X B/c

... often picture as kinematics of interactions back and forth across shock front...

... shapes spectrum dn/de < e 2
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Stochastic particle acceleration in astrophysics

Refs:

... a key question: how to describe stochastic
acceleration in random electric fields...
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1. Fermi 49, 54

stationary spectrum
(continuous injection) .«**
.

time-dependent spectra
(from freshly injected to old)

— stochastic Fermi acceleration?!: particles interact with random motional electric fields (< random velocity and
magnetic fields in a turbulent plasma)

... a well-known signature: hard spectra = most of the
energy at the highest energies...

v




Fermi stochastic acceleration: a standard acceleration scheme in astrophysics

© NASA/SDO © HESS ; © Chandra/NASA

... in solar flares (v, ~ 0.1c)... ... in extra-galactic jets (v, ~ O.C)... ... in pulsar wind nebulae (vy ~ 0.1 — 1 ¢c)...

... key parameter: velocity of largest eddies vy ~ v,
... long-standing issues:
detailed acceleration mechanism? ... consequences? ...

acceleration in relativistic regime (v, ~ ¢)?

... a non-linear (particles < fields), multi-scale problem...

... acceleration near black holes (v, ~ 0.1 — 1 c)...



Stochastic/Fermi-Il acceleration — kinematics of interactions

— a stochastic process: particles interact with discrete, randomly moving magnetized structures carrying E = —vg X B/c

— in detail: Lorentz transform to structure rest frame and back, elastic scattering gives energy change / interaction:

v+ Av

Ve / Aefe =~ (1+vg-v'/?) (1 —vEg-v/c®) — 1~ +0(vg/c)
: N

“net energy gain because more head-on than tail-on collisions...”

Ae? vgE/c)?
— a diffusive process characterized by energy diffusion coefficient: D, = (A€) 62( £/c)

0 1 0
... in practice, assume diffusion coefficient and use Fokker-Planck: —f(p,t) = = — [p2 D

— some open questions:

is this the true acceleration process, what about wave-particle resonant interactions?
how to generalize Fermi to turbulence, where where v = continuous random field with power on all scales?




Numerical studies of particle acceleration in collisionless magnetized turbulence

— a non-linear, multi-scale problem:
... e.8. in turbulence: a fully nonlinear interplay between particles and e.m. fields...
= HPC numerical simulations?
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Refs: 1. fully kinetic (PIC): Zhdankin+17,18,20,... Wong+ 19, Comisso+Sironi 18, 19, Nattil4 + Beloborodov 20, ... Groselj+23

MHD/hybrid sims: Dmitruk+03, Arzner+06, ..., Isliker+17, Pecora+18, Trotta+20, Pezzi+22



Insights from particle tracking in MHD numerical simulations

— MHD / hybrid simulations® of magnetized turbulence + particle tracking:

... for fast (~ exponential!) acceleration in localized regions ...

... non-trivial energy distributions (~not simple Fokker-Planck) ...
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Insights from fully kinetic numerical simulations

— PIC simulations! of particle acceleration in semi- to fully-relativistic (Alfvén v, = 0.1 c), collisionless turbulence:
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— unexpected? emergence of powerlaws, dn/dp « p~° with s ~ 2 ... 4, signature of a rich phenomenology...

— in relativistic regime, diffusion coefficient D,,,, ~ 0.2 ¢ p? c/l, (scaling w/ Alfven 4-velocity)

Refs: 1. Zhdankin+17,18,20, ... Wong+ 19, Comisso+Sironi 18, 19, Néttila + Beloborodov 20, Vega+20, ... Bresci+22
+ many MHD/hybrid (Dmitruk+03, Arzner+06, ..., Isliker+17, Trotta+19, Pezzi+22, Pugliese+23)
2. discussion in M.L. + Malkov 20



Generalized Fermi acceleration in a random velocity flow

— Generalized Fermi model*:
... scheme = track particle momentum along particle word line in the (non-inertial) frame moving at vg

/ ra sb ja b
de” o PP 0w pp
5 = — L,y m — —€d" € UE, v

(vs de/dt = qv - 6E inlab frame)

... motivations:

- E vanishes in frame moving at vy = ¢ E X B/B? = particles are accelerated by visiting regions of
different v < acceleration controlled by gradients of vg [= velocity of magnetic field lines]

- scheme connects A€’ to inertial corrections < gradients of ug (ug = ygvg 4-velocity)

- direct generalization of Fermi process (boost to reference frame of scattering center)

... benefits:
- connection to velocity structures: on scale [ = 1, regions with net gradient of vg

- fully covariant implementation of Fermi acceleration in turbulence, non perturbative scheme

- diffusion coefficient « (ug/c)? validated by numerical sims, while « (vg/c)? expected from wave-particle
interactions3

Refs: 1. M.L. 19 [PRD 99, 083006 (2019)], 21 [PRD 104, 063020 (2021)]; see also previous works by Webb 85, 89

2. other studies in turbulence: Bykov+Toptygin 83, Ptuskin 88, Chandran+Maron 04, Cho+Lazarian 06, Ohira 13, Brunetti+Lazarian 16, ...
3. Demidem, ML, Casse 20



Effective model describing Fermi acceleration in magnetized turbulence

— effective model?:

de’ p' p’b
_— = — ™ eau eby uE,u,l/ [m(t), t}

... decomposition of Up,,, = particle accelerated in regions of compression and shear (mostly)

... stochastic differential equation: random force = gradients of ug... integrate to obtain advection + diffusion
coefficients ... model captures all forms of non-resonant acceleration (in ideal fields) ...

— examples on different scales (small to large):
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shear along B field compression L B field turbulent shear flow large-scale compression
(aka curvature drift) (aka betatron) (aka magnetic pumping)
(close to Fermi type-B) (close to Fermi type-A)

Refs: 1. M.L. 19 [PRD 99, 083006 (2019)], M.L. 21 [PRD 104, 063020 (2021)], M.L. 22 [PRL 129, 215101 (2022)], M.L. 25 [arXiv]



Application to strong turbulence: B = B, dominant contribution from curved field lines

— theoretical model': » =T (simplified expression in comoving frame)
p 1P

: . : o >
with I7 a random field: gradients of vg coarse-grained on scale [ = 7 ... Map of In [T} | in MHD 10243 sim.?

(no guide field: large-amplitude turb.)
[, from dynamic curved field lines, or dynamic perp. gradients (mirrors), O - ] =

or acceleration of field lines
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— Properties of the random force:
... (exponential) energy gainif I > 0, loss if I; < 0
... [ is non-Gaussian, highly localized in specific regions... (in large-amplitude turbulence)
... different particles experience different histories = powerlaw spectrum

Refs.: 1. ML 21 [PRD 104, 063020 (2021)], ML 22 [PRL 129, 215101 (2022)] 2. Eyink+13, JHU database



A transport model reproducing spectra obtained by particle tracking in MHD simulation

— comparison to numerical data:

1. fit model (here 2: blue & red) to p.d.f. of forces (I})
2. integrate kinetic equation?
3. compare to distribution measured in MHD 10243 simulation? by time-dependent particle tracking...
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Some perspectives and phenomenological consequences

— executive summary:
... acceleration in turbulent plasmas can be described as a generalized Fermi process: model supported by
PIC+MHD simulations ... & acceleration through exploration of random velocity flows (shear and compression)
+ a generalized Fermi transport equation in strong turbulence ...

— some consequences:
... statistics of sharp bends of field lines in strong turbulence: can contribute to spatial transport as well, m.f.p.
comparable to naive prediction of quasi-linear theory ...
... acceleration is fast (exponential) in localized regions, e.g. trapping of particles in compressive fluctuations,
diffusion in momentum is heterogeneous ...
... phenomenological consequences: powerlaw spectra are generic ...
... in relativistic turbulence, fast acceleration, local Lorentz boosts — distorted + non-isotropic radiative spectra

— many open questions and perspectives:
... in-depth understanding of acceleration, origin of spectra vs turbulence conditions — application to different
sources
... turbulent acceleration combined with radiative losses — radiative (+polarized) spectra?
... extrapolation to large timescales ? (a strong limit of current numerical simulations)
... derive recipes to implement generalized Fermi acceleration in MHD/GRMHD simulations (acceleration in
complex velocity flows)



Evolution on long” timescales: from simulations to astrophysical objects

— limited duration of simulations:

... in practice, simulations runforT ~ 0(104./c)

tace ~ teool
energy distribution ace €00
A

... numerical spectrum ~ Green’s function to go from
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... important:
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(1) stochastic acceleration is diffusion + advection in momentum space...

(2) final spectrum depends on injection history + whether turbulence is sustained or not (“decaying”)

(3) high-energy particles take most of the energy... until they exhaust the turbulence that feeds them!



Evolution on "long” timescales: accelerated particles can modify the turbulence structure...

— particle acceleration in turbulence, up to feedback!:
... acceleration = loss of energy for turbulence + most of energy given to highest energy particles
... higher energy particles < larger mean free path < source of viscosity + diffusivity

= consequences: (1) self-regulation of acceleration impacts distribution function f (€, t)

(2) removes turbulent power on short scales, modifies plasma heating rate

(3) pressure in accelerated particles can become comparable to plasma pressure
odn ‘
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Refs.: 1. Eichler 79, Eilek 79, ... Kakuwa 16 ..., M.L., Murase, Rieger 24



Stochastic Fermi acceleration & high-energy neutrinos from NGC 1068

— Ice Cube 22: excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068...
.. a possible scenario: stochastic acceleration in turbulent corona + p — ¥ neutrino production'

Comptonized X rays
CRlnducedcascade
CR opucal JUV
MRI
accretion black hole
disk
© Murase+Stecker 22

— model?: integrate spectra through transport eqn... proton spectrum €2 dn/de
... including relevant energy losses
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Stochastic Fermi acceleration & high-energy neutrinos from NGC 1068

— Ice Cube 22: excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068...
.. a possible scenario: stochastic acceleration in turbulent corona + p — ¥ neutrino production'

Comptonized X rays
CR-induced cascade
CR opucal UV

MRI
accr.etion black hole
disk
© Murase+Stecker 22

onset of feedback

)]

— model?: integrate spectra through transport eqn... 10!
... including relevant energy losses . —
.. proper account of feedback of particles on g
turbulence (damping) = reasonable fit to Ice Cube : 107
data, without fine-tuning of normalization... g
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Refs.: 1. e.g. Murase 22 + refs.,... Padovani+24 2. M.L. + Rieger, arXiv:2412.01457
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Summary + discussion: generalized Fermi acceleration in turbulent plasmas

— Summary (1): particle acceleration in turbulence as generalized Fermi process

... Fermi acceleration generalized to turbulence: acceleration in localized regions of strong (field line) velocity
gradients ... model supported by PIC+MHD simulations ...

Ug Ug
R g4 ug by
. u
:buE / E

— Summary (2): application to phenomenology of Ice Cube neutrinos from Seyferts

... (generalized Fermi) transport equation allows to model spectra ...
... an important effect in (many) sources: account for feedback of particles on turbulence... acceleration process
becomes self-regulated
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