Galactic cosmic ray studies with the DAMPE space mission

Candidate: Irene Cagnoli

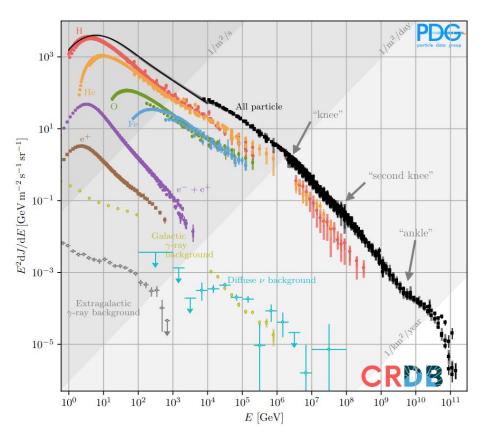
Advisor: Ivan De Mitri Co-advisor: Pierpaolo Savina

3rd year activity report 10/10/2024

Overview

Measurements of CRs spectra with DAMPE:

- The relevance of the all-particle spectrum
 - The DAMPE space mission
 - Analysis and a preliminary result
- Next short-term and long-term project activities


Hardware R&D of the HERD PSD:

- the HERD future space mission
- Activities on the PSD hardware

The all-particle spectrum towards the knee

The all-particle spectrum up to ~1 PeV

- Space-based and ground-based measurements can overlap:
 - establish a **link**
 - **cross-calibration** with ground-based measurements (normalization)
- Combine all particle species using a **loose charge cut** selection
 - to **minimize cross-contamination** among individual element spectra
 - to increase the statistics and reach higher energies wrt individual nuclei spectra

The DAMPE space mission

Collaboration of Chinese, Italian and Swiss • scientific institutions

 Launched on 17 December 2 	015	Figure 2 and the indirect measurements	Preliminary AMS-02 Boron PAMELA Boron PAMELA Boron CALET Boron DAMPE Boron (stat. + sys.) DAMPE Boron (stat.)
Acceptance	>0.1 m ² sr	W → </td <td>LT(U) 3 (GeV) (GeV) (C) (GeV) (C) (GeV) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C</td>	LT(U) 3 (GeV) (GeV) (C) (GeV) (C) (GeV) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
Energy resolution	1.2% at 100 GeV (e/γ) < 40% at 800 GeV (nuclei)	10^2 10^3 10^4 10^5 10^6 10^7 Primary energy (GeV)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
e/γ angular resolution	0.2° at 100 GeV	4 5000 5 Total CNO,DAMPE CNO 5 Systematic & statistical errors	⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶
Detection	20 GeV - 10 TeV (e/γ) 50 GeV - 400 TeV (nuclei)		35 → NUCLEON
 The primary sci Study of nuclei sp 	(e- + e-), CD protons and		$\begin{array}{c} 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

10³

10⁴

10⁵

Kinetic Energy [GeV]

- HE gamma ray astronomy .
- Indirect search of DM signatures .

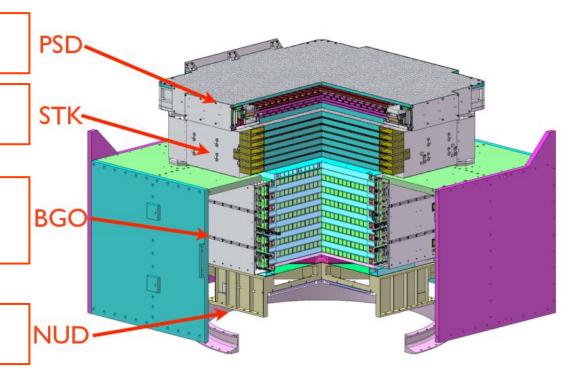
Energy[GeV/n]

The DAMPE detector

Plastic Scintillator Detector (PSD)

- Charge measurement + anti-coincidence for y ID
- 4 layers of PS bars (2 Y & 2 X oriented)

Silicon TracKer (STK)


- **Track** reconstruction + additional **charge** measurement
- 6 planes of Si microstrip detectors + 3 W layers

BGO calorimeter (BGO)

- Energy measurement + em/had showers discrimination
- 14 layers of BGO crystal bars
- 32 X_0 and 1.6 λ_1

NeUtron Detector (NUD)

- Further em/had showers separation
- 4 boron-doped scintillator tiles

Analysis selection & procedure

[mm] Z

200

-100

-300

-400

Primary goal: not use charge cut selection to increase the statistics (& the energy reach)

Experimental data

G S

- 8 years of flight data (01/2016 12/2023)
- Total live time ~1.9 10⁸ s

Monte-Carlo simulations

- p, He, C, O, Ne, Mg, Si, Fe
 - [100 GeV 500 TeV] range
 - GEANT4v4.10.5 with FTFP_BERT and EPOS-LHC
- Assumed a mass composition model
 - To build the weighted mean acceptance and response matrix
 - Different models considered to evaluate the model dependence of the output spectra

In a first investigation

No charge selection + No composition model assumption

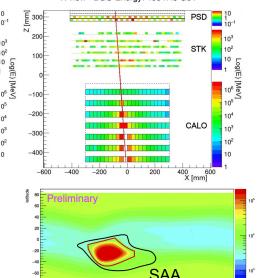
Significant differences in the detector response between light & heavy nuclei

<u>Selection cuts</u>

SAA exclusion

Y view - BGO Energy: 46847.3 GeV

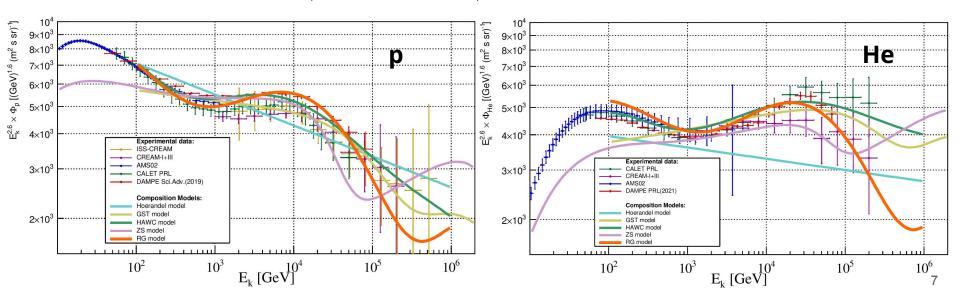
• E_{depo} in each BGO layer < 35% E_{BGO}


CALO

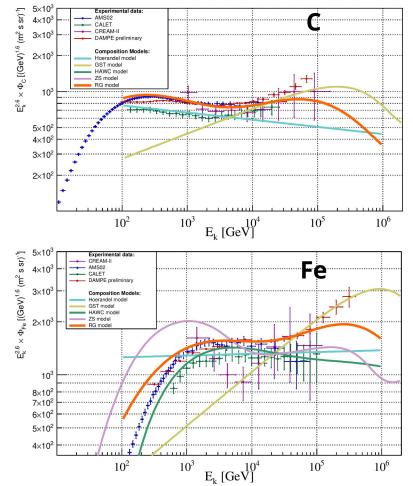
400 Y[mm'

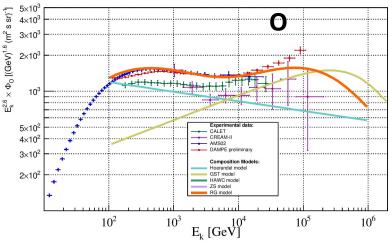
- HET trigger ON
- $E_{BGO} > 100 \text{ GeV}$
- BGO fiducial cuts
 - Reconstructed shower axis inside the fiducial volume
 - ∀ layer: max E_{debo} inside the fiducial volume
- No charge/track selection cuts

X view - BGO Energy: 46847.3 GeV



Composition models

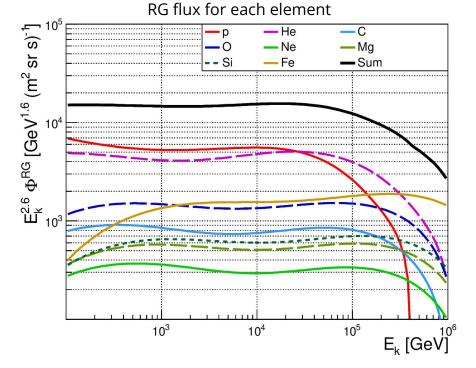

Model	Application E range	Reference		
Hoerandel (poly-gonato) model	[10 GeV - 10 ⁹ GeV]	J. R. Hörandel, Astropart.Phys. 19 (2003) 193-220		
HAWC model	[10 ² GeV - 10 ⁶ GeV]	HAWC, PoS ICRC (2023) 299		
Recchia-Gabici (RG) model	[~GeV - multi PeV]	S. Recchia, S. Gabici (2023) arXiv:2312.11397		
Zatsepin-Sokolskaya (ZS) model	[10 GeV - 10 ⁸ GeV]	V. I. Zatsepin, N. V. Sokolskaya, A&A 458 (2006) 1		
GST model	[<mark>10⁵ GeV</mark> - 10 ¹¹ GeV]	T. K. Gaisser, T. Stanev, S. Tilav, Front. Phys. 8 (2013) 748–758		



Composition models

The **RG model** accurately reproduces the single nuclei spectra: **assumed as the composition model for the analysis**

S G


Implementation of the Recchia-Gabici model

0.6

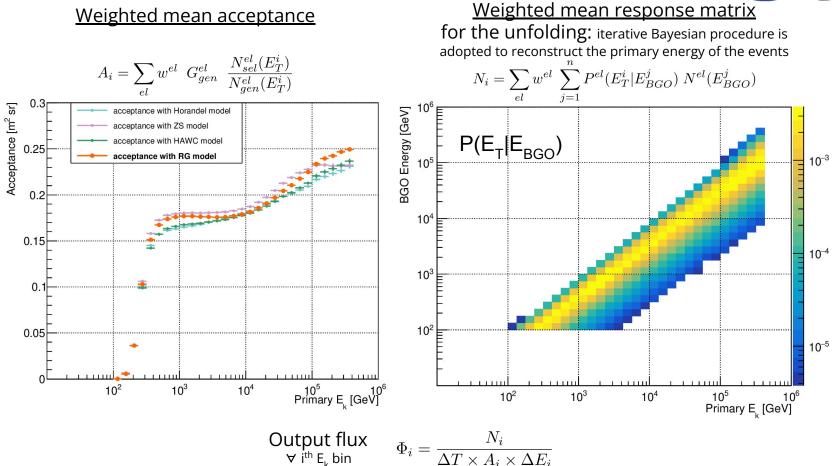
-C

- He

Rel. abundance -Ne -Ma -Fe Si 0.5 0.4 0.3 0.2 0. 10^{2} 10^{3} 10⁵ E_k [GeV] 10^{4}

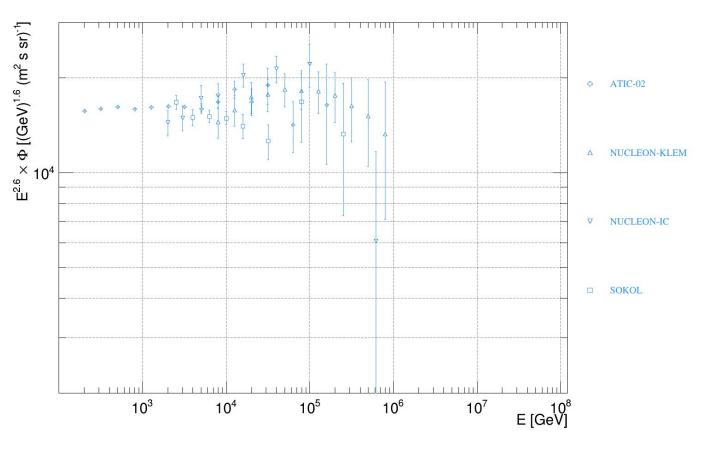
Relative abundances

 \forall element X

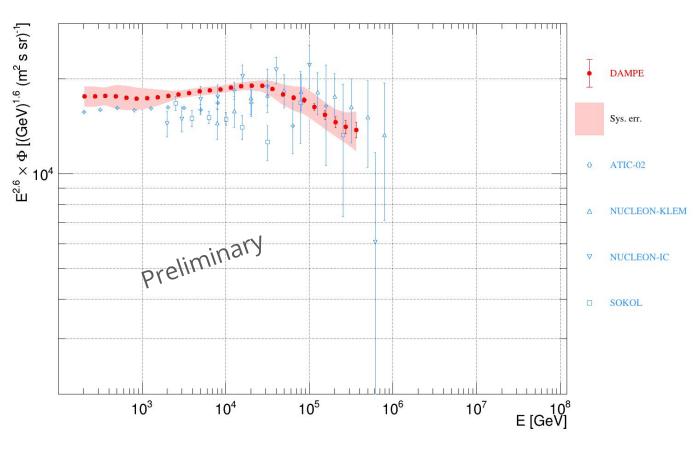

- its flux is described by the RG model
- its rel. abundance is computed and used as a weight to compute the mean acceptance & response matrix

 $w_i^X = \frac{\int_{E_i^{max}}^{E_i^{max}} \Phi_{RG}^X(E) dE}{\sum_{el} \int_{E_i^{min}}^{E_i^{max}} \Phi_{RG}^{el}(E) dE}$

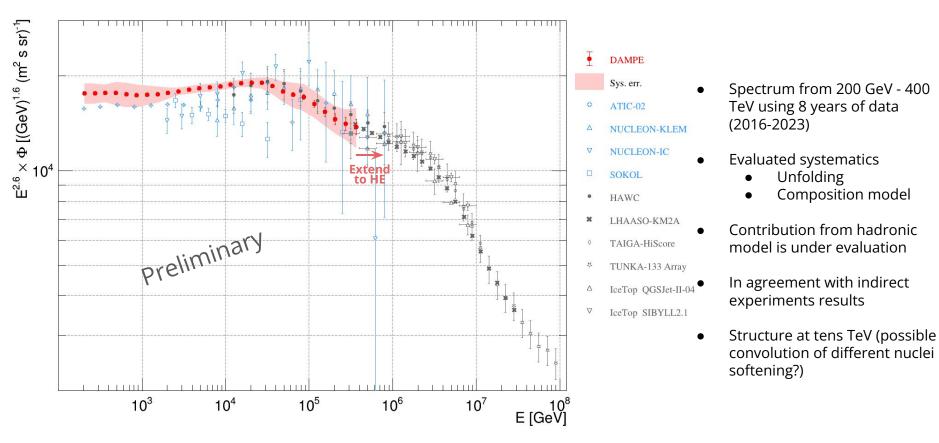
Acceptance and unfolding



All-particle flux



All-particle flux

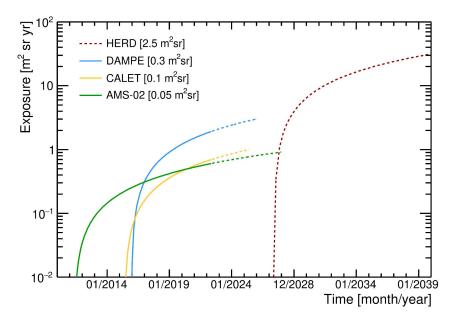


All-particle flux

Future plans with DAMPE

All-particle spectrum

- complete the systematic uncertainties estimation
- investigation of the structure at tens TeV (smoothly broken power law fit)
- extend the measurement up to 0.7/0.8 PeV


Global analysis of DAMPE p+He, CNO, Fe

- evaluate the consistency between the all-particle spectrum and the combined total of the three spectra
- study the overall picture that involve the spectral features of these spectra

G S S I

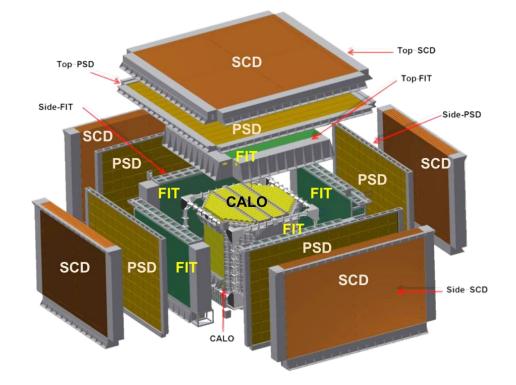
The High Energy cosmic-Radiation Detection mission

- International scientific collaboration led by China and with relevant contributions from Italian, Spanish & Swiss institutes
- The HERD facility is planned to be installed in 2027 on board of the China's Space Station (CSS)

INFŃ

Payload mass	< 4t				
Power consumption	< 1.5 kW				
FOV	± 70°				
Calorimeter	55 Χ ₀ (~3 λ _ι)				
Geometric acceptance	>2 m ² sr at 100 TeV (nuclei) >3 m ² sr at 200 GeV (e) >0.2 m ² sr at 200 GeV (γ)				
Detection	30 GeV - 3 PeV (nuclei) 10 GeV - 100 TeV (e) 0.5 GeV - 100 TeV (γ)				
Energy resolution	1% at 200 GeV (e/γ) ~20% at 100 GeV - 1 PeV (nuclei)				
Angular resolution	0.1 deg. at 10 GeV				

CALOrimeter


- Energy reconstruction
- EM/HAD showers discrimination

FIT (FIber Tracker)

- Charge particles track reconstruction
- Conversion of y to e+e- pairs
- Additional charge measurement

PSD (Plastic Scintillator Detector)

- Anti-coincidence for y ID
- Charge measurement up to Z=26
- Charged particle triggers

SCD (Silicon Charge Detector)

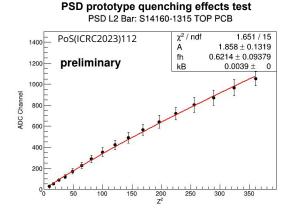
• Charge measurement up to Z=28

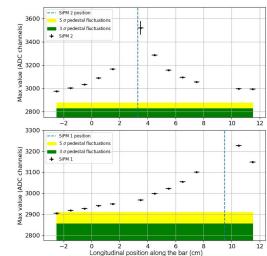
TRD (Transition Radiation Detector)

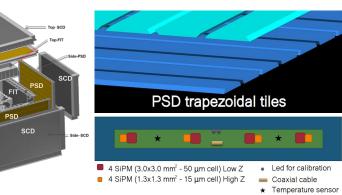
• Calibration of CALO response for TeV p

Plastic Scintillator Detector (PSD)

SCD


Requirements


- High detection efficiency (>99.98%)
- Wide dynamic range in nuclei ID
- Highly segmented


For all 5 sectors: 2 double X-Y layers of scintillating bars, each readout by multiple SiPMs

Test beam campaigns at CERN and CNAO to

- Study the uniformity response of light collection
- Evaluate nuclei ID performances
- Optimise SiPM-based readout

PSD prototype attenuation test

17

Summary

All-particle analysis with DAMPE:

- Derivation the all-particle spectrum with DAMPE investigating possible spectral breaks and the agreement with other experiments
- No charge cut selection is applied to increase statistics, application of a composition model to account for different nuclei responses (RG model)
- Preliminary result of the all-particle spectrum in the 200 GeV 0.4 PeV energy range
- The next steps involve finalizing systematic uncertainties, extending measurements up to 0.7/0.8 PeV, exploring a possible spectral break at tens of TeV, and conducting a global analysis of CR nuclei spectra

Hardware R&D of the HERD PSD:

- tests on hardware and prototypes construction for beam tests at CERN and CNAO
- Finalize prototypes and performances tests

G S

Workshops and conferences

- 6th International Symposium on Ultra High Energy Cosmic Rays (UHECR2022), L'Aquila, 3-7 oct. 2022
- 38th International Cosmic Ray Conference (ICRC2023), virtual, 26 jul. 3 aug. 2023
- 109 Congresso Nazionale SIF, Salerno, 11-15 sept. 2023 talk:"Latest results from the DAMPE space experiment"
- Incontri di Fisica delle Alte Energie 2024 (IFAE 2024), Firenze, 3-5 apr. 2024 talk:"Misura dello spettro all-particle con l'esperimento DAMPE"
- 16th Pisa Meeting on Advances Detectors, La Biodola Isola d'Elba, 26 may 1 jun. 2024
 poster:"HERD space mission: Probing the Galactic Cosmic Ray frontier"
- COSPAR 2024 45th Scientific Assembly, 13-21 jul. 2024 talk:"Measurement of the all-particle energy spectrum with the DAMPE mission"
- 28th European Cosmic Ray Symposium (ECRS 2024), 23-27 sept. 2024
 talk 1:"The HERD space mission"

talk 2 (as a substitute speaker):"Measurement of the iron energy spectrum with the DAMPE space mission"

Conference in memory of Vienamin Sergeyevich Beresinsky, L'Aquila, 1-3 Oct. 2024

Collaboration meetings

- 11th international DAMPE workshop, virtual, 12-15 jun. 2023
- Talks during biweekly working group online meetings of DAMPE

Schools

- NBIA PhD School "Here, There & Everywhere", Copenhagen, 11-15 jul. 2022
- 6th HEP C++ course and hands-on training Essential, virtual, 6-10 mar. 2023
- 12th international IDPASC school and workshop, Granada, 18-28 sept. 2023
- GEANT4 beginners course "First steps with Geant4 2024", virtual, 15-19 apr. 2024

Other activities

- Test beam at CERN SPS for the HERD PSD, 17-25 nov. 2022
- Test beam at CNAO for the HERD PSD, 10-12 jan. 2023
- Test beam at CNAO for the HERD PSD, 21-23 may 2023
- Working in Bari to test the DAQ of the HERD PSD, 10-15 jul. 2023
- Test beam at CERN PS for the HERD PSD, 3-12 sept. 2023
- Test beam at CERN SPS for the HERD PSD, 6-11 oct. 2023

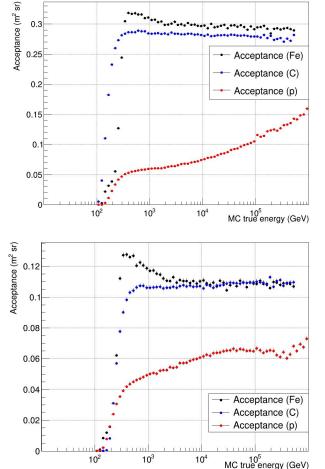
Outreach activities

- Participation in SHARPER (European Researcher's nigh), L'Aquila, 30 sept. 2022
- Volunteer in UHECR2022 conference, L'Aquila, 3-7 oct. 2022
- 9th GSSI Astroparticle physics Science Fair, L'Aquila, 21-23 feb. 2023 talk:"Galactic Cosmic Rays with the DAMPE space mission"
- Participation to "Corso formazione ed addestramento Preposti per visite in underground",
- Assergi-LNGS, 10 may 2023, obtaining the tour guide qualification for underground lab. visits in LNGS
- 10th GSSI Astroparticle physics Science Fair, L'Aquila, 13 feb. 2024 poster:"DAMPE: study of high energy cosmic electrons, photons and nuclei in space"
- Volunteer & Guide for the LNGS lab. underground visit for the SST PhD National Days, L'Aquila, 6-8 jun. 2024
- Participation in SHARPER (European Researcher's nigh), L'Aquila, 27 sept. 2024

Scientific publications

- PoS ECRS (2023) 064
- EPJ Web Conf. 280 (2023) 01001
- Astroparticle Physics 146 (2023) 102795
- PoS ICRC2023 (2023) 142
- PoS ICRC2023 (2023) 161
- PoS ICRC2023 (2023) 163
- PoS ICRC2023 (2023) 130
- PoS ICRC2023 (2023) 174
- PoS ICRC2023 (2023) 165
- PoS ICRC2023 (2023) 170
- PoS ICRC2023 (2023) 138
 Do S ICRC2023 (2023) 145
- PoS ICRC2023 (2023) 115
 Do Doctore (2023) 107
- PoS ICRC2023 (2023) 137
- PoS ICRC2023 (2023) 149
- PoS ICRC2023 (2023) 168
- PoS ICRC2023 (2023) 131
- PoS ICRC2023 (2023) 159
- PoS ICRC2023 (2023) 670
- PoS ICRC2023 (2023) 391
- PoS ICRC2023 (2023) 1316
- PoS ICRC2023 (2023) 139
- IWASI (2023) pp. 184-189, doi: 10.1109/IWASI58316.2023.10164305
- PRD 109 (2024) L121101
- arXiv: 2408.17224 [hep-ex]
- NIM-A 1068 (2024) 169788
- NIM-A 1069 (2024) 169888

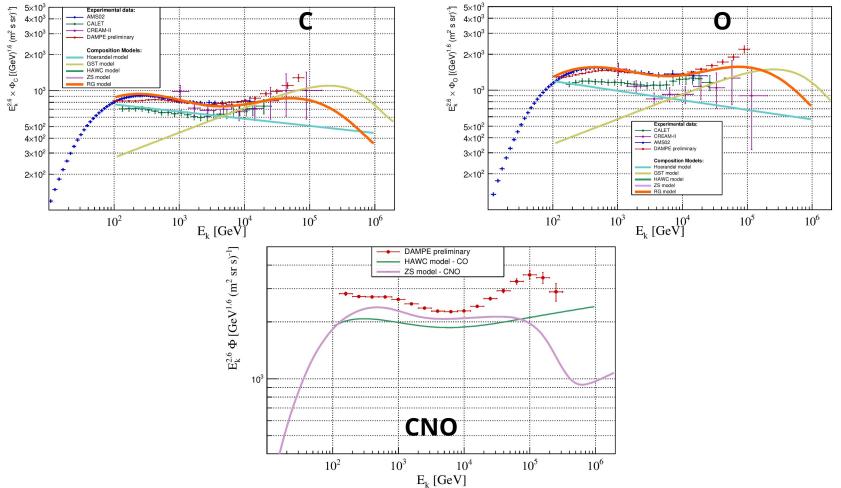
Backup


First analysis investigation (no composition model)

Selection cuts

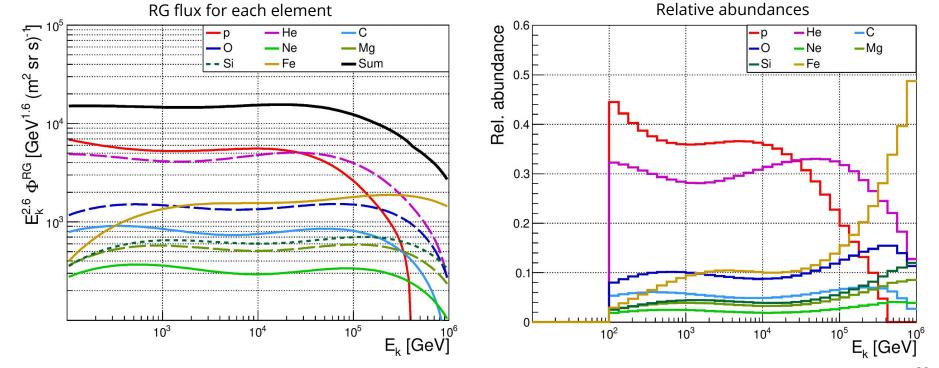
- SAA exclusion
- E_{depo} in each BGO layer < 35% E_{BGO}
- HET trigger ON
- E_{BGO} > 100 GeV
- BGO fiducial cuts
 - Reconstructed shower axis inside the fiducial volume
 - \forall layer: max E_{depo} inside the fiducial volume
- No charge/track selection cuts

- LET trigger on
- Additional cut to maximize the agreement between the p,Fe acceptances
 - Studying the distribution of the shower energy deposit in the BGO bars of each layer


the uncertainty in the unfolded flux would be too large

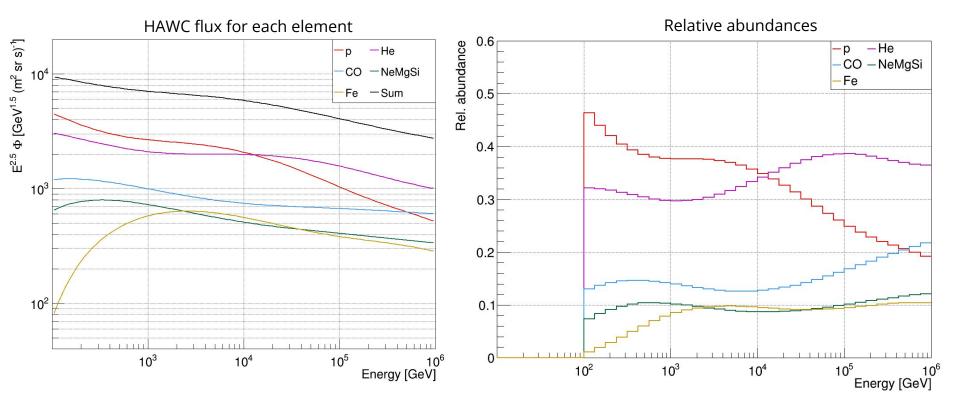
Composition models

22



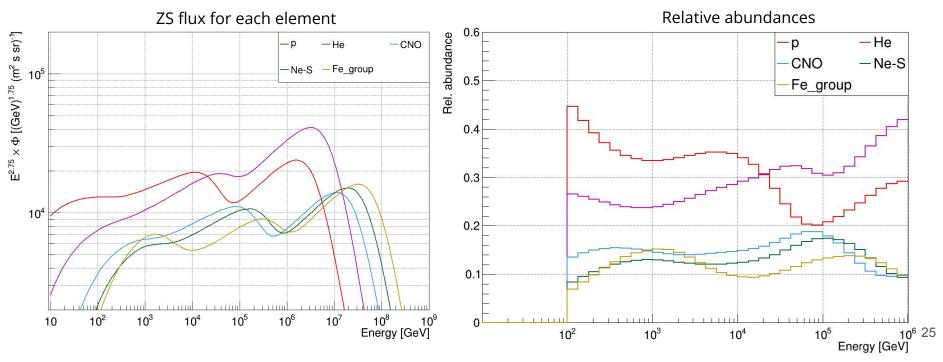
RG Composition model

- Analitic solution derived from the transport equations describe the single element fluxes. Transport equations are obtained assuming 2 populations of CR sources: the majority of SN that are expected to accelerate up to a maximum rigidity of 15 TV a 10% fraction of SN is expected to accelerate up to PetaVolt



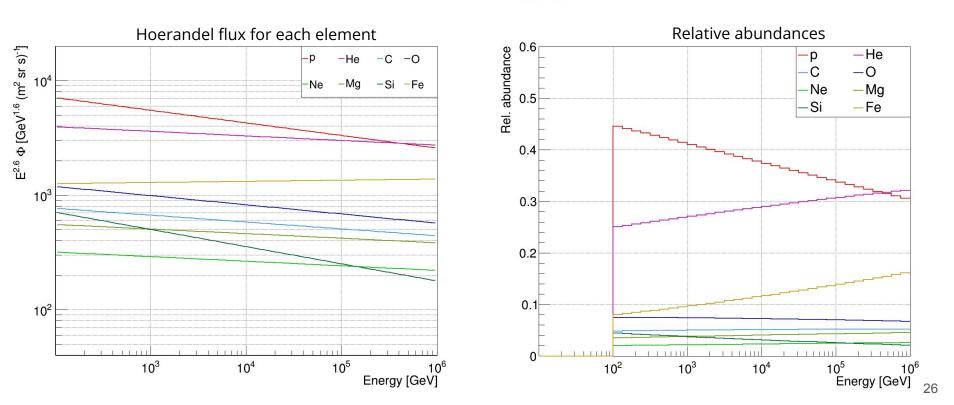
HAWC composition model

• Derived by fitting BPL functions to data from ATIC-2, CREAM, PAMELA, AMS-2, NUCLEON, CALET, DAMPE, KASCADE



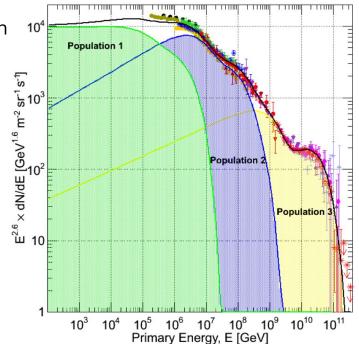
ZS composition model

- 3 different classes of sources: each class prod. a spectrum for 5 nuclear group that
 - is simple power-law after termination of effective acceleration
- with specific spectral-index γ_k & Rmax Nuclear groups: p, He, CNO, Ne-S, Fe-group(Z>17)
- Solar modulation is taken into account
- Model fitted on experimental direct & EAS data



Hoerandel composition model

- Spectra of individual elements obtained from direct observations . and extrapolated to high energies Direct experiments data fitted with SPL functio $\Phi(E) = \Phi^0 \left(\frac{E}{1TeV}\right)^{\gamma}$

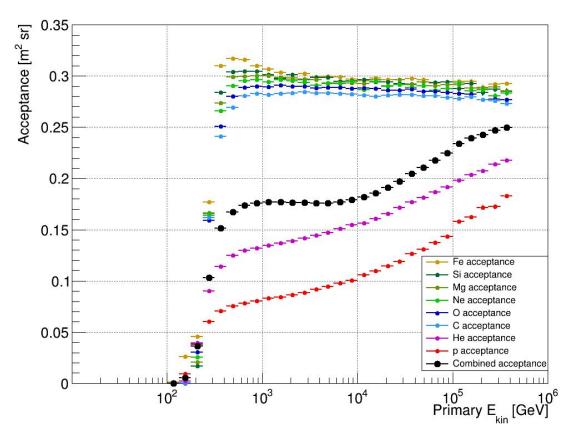

GST composition model

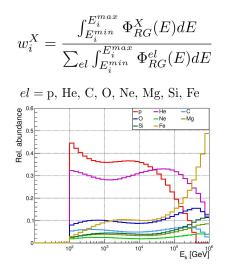
- Performed 2 different fits to experimental data
 - each assuming 3 populations of particles
 - different assumptions for the rigidity cut off for each population
 - 3 populations: pop. 1 & 2 of galactic origin, pop. 3 is extragalactic
 - Each population (j) is contains 5 groups of nuclei (i)

$$\phi_i(E) = \Sigma_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right]$$

	р	He	С	Ο	Fe
Pop. 1:	7000	3200	100	130	60
$R_c = 120 \text{ TV}$	1.66 1	1.58	1.4	1.4	1.3
Pop. 2:	150	65	6	7	2.3
$R_c = 4 \text{ PV}$	1.4	1.3	1.3	1.3	1.2
Pop. 3:	14				0.025
$R_c = 1.3 \text{ EV}$	1.4				1.2

GST composition model





Single elements acceptances

Rel. abund. computed using the RG model

Weighted mean acceptance

$$A_i = \sum_{el} w^{el} \ G^{el}_{gen} \ \frac{N^{el}_{sel}(E^i_T)}{N^{el}_{gen}(E^i_T)}$$