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Measurements of CRs spectra with DAMPE:
● The relevance of the all-particle spectrum

● The DAMPE space mission
● Analysis and a preliminary result

● Next short-term and long-term project activities

Hardware R&D of the HERD PSD:
● the HERD future space mission
● Activities on the PSD hardware
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Overview



The all-particle spectrum towards the knee

The all-particle spectrum up to ~1 PeV
● Space-based and ground-based measurements can 

overlap:

● establish a link
● cross-calibration with ground-based 

measurements (normalization)

● Combine all particle species using a  loose charge cut 
selection 

● to minimize cross-contamination among 

individual element spectra

● to increase the statistics and reach higher 
energies wrt individual nuclei spectra
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● Collaboration of Chinese, Italian and Swiss 
scientific institutions

● Launched on 
17 December 2015 

● The primary scientific goals:
● Study of (e- + e-), CD protons and 

nuclei spectra
● HE gamma ray astronomy
● Indirect search of DM signatures

The DAMPE space mission

p+He B

CNO Fe

Acceptance >0.1 m2sr

Energy resolution 1.2% at 100 GeV (e/γ)
< 40% at 800 GeV (nuclei)

e/γ angular resolution 0.2° at 100 GeV

Detection 20 GeV - 10 TeV (e/γ)
50 GeV - 400 TeV (nuclei)
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Plastic Scintillator Detector (PSD)
● Charge measurement + anti-coincidence for γ ID 
● 4 layers of PS  bars (2 Y & 2 X oriented)

Silicon TracKer (STK)
● Track reconstruction + additional charge measurement 
● 6 planes of Si microstrip detectors + 3 W layers 

BGO calorimeter (BGO)
● Energy measurement + em/had showers discrimination 
● 14 layers of BGO crystal bars 
● 32 X0 and 1.6 λI  

NeUtron Detector (NUD)
● Further em/had showers separation 
● 4 boron-doped scintillator tiles 

The DAMPE detector
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In a first investigation

No charge selection + No composition model 
assumption

  

Significant differences in the detector 
response between light & heavy nuclei

Experimental data

● 8 years of flight data (01/2016 - 12/2023)
● Total live time ~1.9 108 s

Monte-Carlo simulations

● p, He, C, O, Ne, Mg, Si, Fe 
● [100 GeV - 500 TeV] range
● GEANT4v4.10.5 with FTFP_BERT and EPOS-LHC

● Assumed a mass composition model
● To build the weighted mean acceptance and 

response matrix
● Different models considered to evaluate the model 

dependence of the output spectra

Analysis selection & procedure

Selection cuts

● SAA exclusion
● Edepo in each BGO layer < 35% EBGO 
● HET trigger ON
● EBGO > 100 GeV 
● BGO fiducial cuts

● Reconstructed shower axis inside the fiducial volume
● ∀ layer: max Edepo inside the fiducial volume

● No charge/track selection cuts

SAA
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Primary goal: not use charge cut selection 
to increase the statistics (& the energy reach)



Composition models

p He

Model Application E range Reference

Hoerandel (poly-gonato) model [10 GeV - 109 GeV] J. R. Hörandel,  Astropart.Phys. 19 (2003) 193-220

HAWC model [102 GeV - 106 GeV] HAWC, PoS ICRC (2023) 299

Recchia-Gabici (RG) model [~GeV - multi PeV] S. Recchia, S. Gabici  (2023) arXiv:2312.11397

Zatsepin-Sokolskaya (ZS) model [10 GeV - 108 GeV] V. I. Zatsepin, N. V. Sokolskaya, A&A 458 (2006) 1

GST model [105 GeV - 1011 GeV] T. K. Gaisser, T. Stanev, S. Tilav,  Front. Phys. 8 (2013) 748–758
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O

Fe

The RG model accurately 
reproduces the single nuclei spectra: 

assumed as the composition 
model for the analysis

C
Composition models
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Implementation of the Recchia-Gabici model

∀ element X 
● its flux is described by the RG model
● its rel. abundance is computed and used as a 

weight to compute the mean acceptance & 
response matrix

RG flux for each element Relative abundances
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Acceptance and unfolding
Weighted mean acceptance

P(ET|EBGO)

Weighted mean response matrix
for the unfolding: iterative Bayesian procedure is 
adopted to reconstruct the primary energy of the events

Output flux 
∀ ith Ek bin
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All-particle flux
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All-particle flux
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Preliminary



All-particle flux

● Spectrum from 200 GeV - 400 
TeV using 8 years of data 
(2016-2023)

● Evaluated systematics 
● Unfolding
● Composition model

● Contribution from hadronic 
model is under evaluation

● In agreement with indirect 
experiments results

● Structure at tens TeV (possible 
convolution of different nuclei 
softening?)

13

Preliminary

Extend 
to HE



Future plans with DAMPE

All-particle spectrum
● complete the systematic uncertainties estimation 
● investigation of the structure at tens TeV (smoothly broken power law fit)
● extend the measurement up to 0.7/0.8 PeV

Global analysis of DAMPE p+He, CNO, Fe 
● evaluate the consistency between the all-particle spectrum and the 

combined total of the three spectra
● study the overall picture that involve the spectral features of these 

spectra
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The High Energy cosmic-Radiation Detection mission

● International scientific collaboration led by China and 
with relevant contributions from Italian, Spanish & 
Swiss institutes

● The HERD facility is planned to be installed in 2027 on 
board of the China’s Space Station (CSS)
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Payload mass < 4t

Power consumption < 1.5 kW

FOV ± 70°

Calorimeter 55 X0 (~3 λI )

Geometric acceptance
>2 m2sr at 100 TeV (nuclei)

>3 m2sr at 200 GeV (e)
>0.2 m2sr at 200 GeV (γ)

Detection
30 GeV - 3 PeV (nuclei)

10 GeV - 100 TeV (e)
0.5 GeV - 100 TeV (γ)

Energy resolution 1% at 200 GeV (e/γ)
~20% at 100 GeV - 1 PeV (nuclei)

Angular resolution 0.1 deg. at 10 GeV



The Detector

CALOrimeter
● Energy reconstruction
● EM/HAD showers discrimination

FIT (FIber Tracker)
● Charge particles track reconstruction
● Conversion of γ to e+e- pairs
● Additional charge measurement

PSD (Plastic Scintillator Detector)
● Anti-coincidence for γ ID
● Charge measurement up to Z=26
● Charged particle triggers

SCD (Silicon Charge Detector)
● Charge measurement up to Z=28

TRD (Transition Radiation Detector)
● Calibration of CALO response for TeV p

From
 inside to outside
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Plastic Scintillator Detector (PSD)
Requirements

● High detection efficiency (>99.98%)
● Wide dynamic range in nuclei ID
● Highly segmented

For all 5 sectors: 2 double X-Y layers of scintillating bars,
 each readout by multiple SiPMs

Test beam campaigns at CERN and CNAO to
● Study the uniformity response of light collection
● Evaluate nuclei ID performances
● Optimise SiPM-based readout

PSD prototype quenching effects test

PSD prototype attenuation test
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PoS(ICRC2023)112 



All-particle analysis with DAMPE:
● Derivation the all-particle spectrum with DAMPE investigating possible spectral breaks and 

the agreement with other experiments
● No charge cut selection is applied to increase statistics, application of a composition model 

to account for different nuclei responses (RG model)
● Preliminary result of the all-particle spectrum in the 200 GeV - 0.4 PeV energy range
● The next steps involve finalizing systematic uncertainties, extending measurements up to 0.7/0.8 

PeV, exploring a possible spectral break at tens of TeV, and conducting a global analysis of CR 
nuclei spectra

Hardware R&D of the HERD PSD:
● tests on hardware and prototypes construction for beam tests at CERN and CNAO
● Finalize prototypes and performances tests
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Summary
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Workshops and conferences
● 6th International Symposium on Ultra High Energy Cosmic Rays (UHECR2022), L’Aquila, 

3-7 oct. 2022
● 38th International Cosmic Ray Conference (ICRC2023), virtual, 26 jul. - 3 aug. 2023
● 109 Congresso Nazionale SIF, Salerno, 11-15 sept. 2023

talk:”Latest results from the DAMPE space experiment”
● Incontri di Fisica delle Alte Energie 2024 (IFAE 2024), Firenze, 3-5 apr. 2024

talk:”Misura dello spettro all-particle con l’esperimento DAMPE”
● 16th Pisa Meeting on Advances Detectors, La Biodola Isola d’Elba, 26 may - 1 jun. 2024

poster:”HERD space mission: Probing the Galactic Cosmic Ray frontier”
● COSPAR 2024 45th Scientific Assembly, 13-21 jul. 2024

talk:”Measurement of the all-particle energy spectrum with the DAMPE mission”
● 28th European Cosmic Ray Symposium (ECRS 2024), 23-27 sept. 2024

talk 1:”The HERD space mission”
talk 2 (as a substitute speaker):”Measurement of the iron energy spectrum with the 
DAMPE space mission”

● Conference in memory of Vienamin Sergeyevich Beresinsky, L’Aquila, 1-3 Oct. 2024

Collaboration meetings
● 11th international DAMPE workshop, virtual, 12-15 jun. 2023
● Talks during biweekly working group online meetings of DAMPE

Schools
● NBIA PhD School ”Here, There & Everywhere”, Copenhagen, 11-15 jul. 2022
● 6th HEP C++ course and hands-on training - Essential, virtual, 6-10 mar. 2023
● 12th international IDPASC school and workshop, Granada, 18-28 sept. 2023
● GEANT4 beginners course ”First steps with Geant4 2024”, virtual, 15-19 apr. 2024

Other activities
● Test beam at CERN SPS for the HERD PSD,  17-25 nov. 2022
● Test beam at CNAO for the HERD PSD, 10-12 jan. 2023
● Test beam at CNAO for the HERD PSD, 21-23 may 2023
● Working in Bari to test the DAQ of the HERD PSD, 10-15 jul. 2023
● Test beam at CERN PS for the HERD PSD, 3-12 sept.  2023
● Test beam at CERN SPS for the HERD PSD, 6-11 oct. 2023

Outreach activities
● Participation in SHARPER (European Researcher’s nigh), L’Aquila, 30 sept. 2022
● Volunteer in UHECR2022 conference, L’Aquila, 3-7 oct. 2022
● 9th GSSI Astroparticle physics Science Fair, L’Aquila, 21-23 feb. 2023

talk:”Galactic Cosmic Rays with the DAMPE space mission”
● Participation to ”Corso formazione ed addestramento Preposti per visite in underground”,
● Assergi-LNGS, 10 may 2023, obtaining the tour guide qualification for underground lab. 

visits in LNGS
● 10th GSSI Astroparticle physics Science Fair, L’Aquila, 13 feb. 2024

poster:”DAMPE: study of high energy cosmic electrons, photons and nuclei in space”
● Volunteer & Guide for the LNGS lab. underground visit for the SST - PhD National Days, 

L’Aquila, 6-8 jun. 2024
● Participation in SHARPER (European Researcher’s nigh), L’Aquila, 27 sept. 2024

Scientific publications
● PoS ECRS (2023) 064 
● EPJ Web Conf. 280 (2023) 01001
● Astroparticle Physics 146 (2023) 102795
● PoS ICRC2023 (2023) 142
● PoS ICRC2023 (2023) 161
● PoS ICRC2023 (2023) 163
● PoS ICRC2023 (2023) 130
● PoS ICRC2023 (2023) 174
● PoS ICRC2023 (2023) 165
● PoS ICRC2023 (2023) 170
● PoS ICRC2023 (2023) 138
● PoS ICRC2023 (2023) 115
● PoS ICRC2023 (2023) 137
● PoS ICRC2023 (2023) 149
● PoS ICRC2023 (2023) 168
● PoS ICRC2023 (2023) 131
● PoS ICRC2023 (2023) 159
● PoS ICRC2023 (2023) 670
● PoS ICRC2023 (2023) 391
● PoS ICRC2023 (2023) 1316
● PoS ICRC2023 (2023) 139
● IWASI (2023) pp. 184-189, doi: 10.1109/IWASI58316.2023.10164305
● PRD 109 (2024) L121101
● arXiv: 2408.17224 [hep-ex]
● NIM-A 1068 (2024) 169788
● NIM-A 1069 (2024) 169888



Backup



First analysis investigation (no composition model)

● LET trigger on
● Additional cut to maximize the agreement 

between the p,Fe acceptances
● Studying the distribution of the 

shower energy deposit in the BGO 
bars of each layer
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Selection cuts

● SAA exclusion
● Edepo in each BGO layer < 35% EBGO 
● HET trigger ON
● EBGO > 100 GeV 
● BGO fiducial cuts

● Reconstructed shower axis inside the 
fiducial volume

● ∀ layer: max Edepo inside the fiducial volume
● No charge/track selection cuts

the uncertainty 
in the unfolded 
flux would be 
too large



OC
Composition models
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CNO



RG Composition model
● Analitic solution derived from the transport equations describe the single element fluxes. 
● Transport equations are obtained assuming 2 populations of CR sources: 

● the majority of SN that are expected to accelerate up to a maximum rigidity of 15 TV
● a 10% fraction of SN is expected to accelerate up to PetaVolt
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RG flux for each element Relative abundances



HAWC composition model

● Derived by fitting BPL functions to data from ATIC-2, CREAM, PAMELA, AMS-2, NUCLEON, CALET, DAMPE, KASCADE

HAWC flux for each element Relative abundances
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● 3 different classes of sources: each class prod. a spectrum for 5 nuclear group that
● is simple power-law after termination of effective acceleration
● with specific spectral-index γk & Rmax

● Nuclear groups: p, He, CNO, Ne-S, Fe-group(Z>17)
● Solar modulation is taken into account
● Model fitted on experimental direct & EAS data

ZS flux for each element Relative abundances
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ZS composition model



● Spectra of individual elements obtained from direct observations 
and extrapolated to high energies

● Direct experiments data fitted with SPL function

Hoerandel flux for each element Relative abundances
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Hoerandel composition model



● Performed 2 different fits to experimental data
● each assuming 3 populations of particles 
● different assumptions for the rigidity cut off for each 

population
● 3 populations: pop. 1 & 2 of galactic origin, pop. 3 is 

extragalactic
● Each population (j) is contains 5 groups of nuclei (i)
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GST composition model



GST flux for each element Relative abundances
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GST composition model
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Single elements acceptances

Weighted mean acceptance

Rel. abund. computed using the RG model


