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TeV Halos

Figure: HAWC sky map of TeV emission from
Geminga and its neighbour PSR B0656+14.

Credits: HAWC Collaboration

Figure: Sketch of the main evolutionary stages of
a pulsar wind nebula.

Credits: Giacinti et al. (2020)

Standard assumption

Pulsar outside the SNR → Low diffusion coefficient problem [Abeysekara et al.

(2017)]
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Solving the diffusion coefficient problem

Theoretical explanations

Cosmic-ray induced turbulence [Evoli, Linden, et al. (2018), Mukhopadhyay et al. (2022)]

Environment induced turbulence [Fang et al. (2019), Schroer et al. (2022)]

Which medium are the leptons probing when we see a TeV halo?

Where is the pulsar at a given age?
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Goal of this work

Method

Computation of the escape time from the SNR of a population of pulsars
using a Monte Carlo approach for 3 models:

ISM (interstellar medium)

CSM (circumstellar medium)

SB (superbubble)
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Property of the pulsars: Kick velocity

Kick velocity distribution

Taken from Faucher-Giguère et al. (2006), modulus of all components:

f (v x ,y ,z
k ) = w N (vk,ff = 160 km=s) + (1− w)N (vk,ff = 780 km=s) (1)

with w = 0.90.
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Figure: PDF of the kick velocity of pulsars.
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ISM model

Assumptions

Constant interstellar medium around the CC SN

Distributions of ESN and nISM

SNR evolution

Analytical solutions following Cioffi et al. (1988), compared with the
calculator by Leahy and Williams (2017):

Sedov-Taylor phase

Pressure-Driven Snowplough phase

(Momentum Conserving Stage)

Merger with the ISM
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ISM model: SN energy and ISM density
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Figure: Lognormal distributions, following Leahy, Ranasinghe, et al. (2020). Computed by as-
suming a constant ISM density surrounding each of 43 SNe.

Lioni-Moana Bourguinat (GSSI) Passage of the year October 10th, 2024 6 / 18



ISM model: Escape time
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Figure: Probability of pulsars being inside the SNR as a function of time for the ISM model.
Characteristic ages of pulsars are orders of magnitude, taken from the catalog of Manchester

et al. (2005).
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CSM model

Assumptions

CC SN happens in the circumstellar medium shaped by the
progenitor

Process
Pick a random progenitor mass
from a Galactic Initial Mass
Function (IMF),

Star properties [Seo et al. (2018)],

Bubble properties [Weaver et al.

(1977), Härer et al. (2023)].

Neglecting post-MS phases for the
wind and bubble structure.
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Figure: Density profile in the CSM, based on
Weaver et al. (1977).
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CSM model: Comparing the shell mass and the SNR mass

Parameters for a star of
MZAMS = 8 M⊙

Bubble radius rb = 20 pc,

Surrounding ISM density of
nISM = 1 cm−3,

Mass lost in winds
∆MMS = 0.1 M⊙ and
∆MRSG = 3.4 M⊙,

Ejecta mass is
MZAMS −∆MMS −∆MRSG −
Mpulsar = Mej = 3.1 M⊙,

Mass swept in the bubble by the
SNR is the mass lost in winds.

Computations

Mshell =
4ı

3
ȷISMr

3
b = 755 M⊙ (2)

Mass ratio:
Mshell

Mej +∆M
= 116 (3)

Shell stops the expansion of the SNR

Conclusion
Boundary: bubble radius instead of
the SNR
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SB model

Assumptions

Point-like cluster surrounded by a superbubble [Weaver et al. (1977)]

Ambient density of nISM ∼ 100 cm−3
[Parizot et al. (2004)]

The SNR is very fast or merges within the SB [Mac Low et al. (1988)]

Process

Pick a random cluster mass following a cluster IMF [Portegies Zwart et al. (2010)].

Populate with stars following the Galactic IMF.

Compute the cluster luminosity and SB radius [Weaver et al. (1977), Härer et al. (2023)].

Pick a random massive star and find the associated MS time [Seo et al. (2018)].

Creation of a pulsar at the MS time and propagation of both pulsar and
SB radius.
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Comparing the probability of being inside the boundary
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Figure: Probability of pulsars being inside the bubble (SB) as a function of time for the CSM
(SB) models respectively.
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Some numbers

Pulsar Age [kyr] Inside (CSM, 4%1) Inside (SB, 96%1)

B0656+14 110 49% 85%
J0622+3749 208 19% 61%
Geminga 342 6% 33%

More on Geminga

Hints that Geminga is in a hot ionized medium:

No H¸ lines in the near vicinity [Caraveo et al. (2003)]

Proximity to Gemini H¸ Ring bubble [Knies et al. (2018)]

1of O stars[de Wit et al. (2005)]
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Comparing the probability of being inside the boundary
Changing the maximum star mass
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Figure: Probability of pulsars being inside the bubble (SB) as a function of time for the CSM
(SB) models respectively.

Two curves are added by changing the maximum mass of massive stars that create pulsars from
120 M⊙ to 40 M⊙ following Sukhbold et al. (2016).
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Comparing the probability of being inside the boundary
Special case: exiting the SNR inside the bubble
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Figure: Probability of pulsars being inside the bubble (SB) as a function of time for the CSM
(SB) models respectively. Max mass 40 M⊙.

The green curve corresponds to the escape time of pulsars from the SNR inside the CSM, and
the orange inside the SB.
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Energy available for escaping pulsars
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Figure: Evolution of the available energy of a
pulsar as a function of time. Towards the later

ages there are integration artifacts.
P0 = 100 ms, vk = 280 km=s as in Evoli,

Amato, et al. (2021).
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al. (2011).
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Summary

Main questions

Which medium are the leptons probing when we see a TeV halo?
Where is the pulsar at a given age?

Conclusions

Typically assumed: ∼ 50 kyr and probe the ISM.

We find instead a majority of & 100 kyr pulsars are inside the
CSM/SB.

Are Geminga and PSR B0656+14 in a hot and turbulent
environment?

How are CSM/SB connected to TeV halos?

How about similar pulsars in radio?
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Perspectives

In the same project

Add the OB star association as a possible model for the evolution of
the system

Create a Galactic statistic assuming probabilities of pulsars being
born in one or another region

New projects: looking at the injection

Investigate the contribution of millisecond pulsars to the CR lepton
spectrum

Work on the injection of leptons in the interaction between the
PWN and the SNR using MHD simulations
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Events attended

Conference

Talk in person at RICAP-2024 (Roma International Conference on
Astro-Particle Physics), Roma Tre, Frascati

Workshop

Participation in person to the Workshop on Numerical
Multi-Messenger Modelling by Astroparticule et Cosmologie, Paris

Participation in person to the Conference in memory of Veniamin
Berezinskii, GSSI, L’Aquila

Summer School

Participation in person to the MPIK-CDY School on the Future of
Gamma-Ray Astronomy by the Max Planck Institute fur
Kernphysik, Heidelberg
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CSM model
Theoretical framework for the SNR shock

Time (Numerically integrated)

t(Rs) =

Z Rs

0

1

us(r)
dr (4)

Speed (Analytical)

us(Rs) =
‚ + 1

2

»
2¸ESN

M2(Rs)R¸s
×
Z Rs

0
r¸−1M(r)dr

–
(5)

with ¸ = 6(‚ − 1)=(‚ + 1).

Mass (Analytical)

M(r) = Mej + 4ı

Z r

0
r ′2ȷ(r ′)dr ′ (6)
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CSM model
Density profile

The numbers (model from Weaver et al. (1977))

Wind region (Rs < rw):

ȷw(Rs) =
Ṁ

4ıuwR2
s

Bubble region (rw < Rs < rb):
ȷb(Rs) = ȷb

Shell region (rb < Rs < rISM):

ȷshell =
Mshell

Vshell
=

4ı
3 r3bȷISM

4ı
3

`
r3ISM − r3b

´
ISM region (rISM < Rs):

ȷISM = 1 cm−3
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CSM model
Looking at all the distributions
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Figure: Luminosity distribution.
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CSM model
Looking at all the distributions
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Figure: Mass loss distribution.
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CSM model
Looking at all the distributions
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Figure: SNR ejecta mass distribution.
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CSM model
Looking at all the distributions
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Figure: Wind speed distribution.
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CSM model
Looking at all the distributions
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Figure: Wind radius distribution.
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CSM model
Looking at all the distributions
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Figure: Main sequence time distribution.
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CSM model
Looking at all the distributions
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Figure: Bubble radius distribution.

Formula

From Weaver et al. (1977) and
Härer et al. (2023):

rb = 21 pc “
1=5
b L

1=5
36 n

−1=5
ISM,1t

3=5
6 (7)
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CSM model
Looking at all the distributions
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SNR mass = ejecta + swept mass
SNR mass = ejecta mass

Figure: Shell mass/SNR mass distribution. We show for both the ejecta mass and the swept
mass. Naturally, the swept mass is higher than the ejecta mass, resulting in a lower (by less than
an order of magnitude) ratio. The shape in two parts of the orange curve is linked to the shape

of the bubble radius (which is the determining factor for the parameter).
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CSM model
Density profile
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Figure: Density profile in the CSM, based on Weaver et al. (1977).
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CSM model
Mass profile

10 4 10 3 10 2 10 1 100 101 102

Radius [pc]

101

102

103

104

105

M
as

s 
[M

]
M(r)
rw
rb
rshell

Figure: Accumulated mass profile in the CSM, analytically computed from the density profile
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CSM model
Speed profile
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Figure: Accumulated speed profile in the CSM, analytically computed from the mass profile
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CSM model
Conditions

Radiative phase

trad =
3

2

kbT

nΛ(T )

with Λ(T ) = 1.6× 10−19 T−1=2 erg=cm3=s. We always go radiative when
reaching the shell.

Merger with the bubble shell

us(Rs) = ˛csound(T (Rs))

with ˛ = 3 and the speed of sound csound depending on the temperature
profile found in Weaver et al. (1977). Since the SNR stops inside the shell,
it merges there.

Lioni-Moana Bourguinat (GSSI) Passage of the year October 10th, 2024 35 / 18



SB model
Looking at all the distributions
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Figure: Superbubble radius distribution.
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