

First results from the neutrino mass experimentKATRINChristian Weinheimer – University of Münster

Colloquium, Gran Sasso Scientific Institute, 11.12.19

- Introduction importance of neutrino mass
- The KArlsruhe TRItium Neutrino experiment KATRIN
- First results from KATRIN
- Future of neutrino mass measurements
- Conclusions

Institut für Kernphysik Westfälische Wilhelms-Universität Münster

living.knowledge

Neutrinos in the Standard Model of particle physics

Neutral, spin ¹/₂,

Only weak interaction (W,Z very heavy):

 $\lambda_{\!_{_{\! \rm V}}} \approx$ light years at MeV scale

interaction rate increases linearly with E₀ usually

The most abundant particle in the universe: 336 / cm³ (together with the particle of light, the photon)

In original SM v only left-handed: v_L → difficult to account for mass term: Yukawa coupling to the Higgs did not exist in the SM

Colloquium GSSI, 11.12.19

Positive results from v oscillation experiments

atmospheric neutrinos

(Kamiokande, Super-Kamiokande, IceCube, ANTARES)

accelerator neutrinos

(K2K, T2K, MINOS, Nova, OPERA, MiniBoone)

solar neutrinos (Homestake, Gallex, Sage, Super-Kamiokande, SNO, Borexino)

reactor neutrinos (KamLAND, CHOOZ, Daya Bay, Double CHOOZ, RENO, ...)

Importance of neutrino mass for particle physics and cosmology

Three complementary ways to the absolute neutrino mass scale

Wavelength λ [h⁻¹ Mpc] 1000 100 1000 10 1) Cosmology . P(k) [(h⁻¹ Mpc)³] 00 00 very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.12 \text{ eV}$ er abundance р **2)** Search for $\mathbf{0}_{\nabla\beta\beta}$ Wavenumber k [h/Mpc] Sensitive to Majorana neutrinos, model-dependent $ar{ u}_{ m e}$ Upper limits by EXO-200, KamLAND-Zen, GERDA, CUORE n n 3) Direct neutrino mass determination: No further assumptions needed, use $E^2 = p^2c^2 + m^2c^4$ 6 N [a.u.] \Rightarrow m²(v) is observable mostly $m_{,,} = 0 eV$ **Time-of-flight measurements** (v from supernova) $m_{\nu} = 1 \text{ eV}$ Kinematics of weak decays / beta decays, e.g. tritium, ¹⁶³Ho measure charged decay prod., E-, p-conservation 5 0.5 $E - E_0 [eV]$

WWU Direct determination of "m(v_e)" from β -decay (EC)

β: dN/dE = K F(E,Z) p E_{tot} (E₀-E_e)
$$\Sigma |U_{ei}|^2 \sqrt{(E_0-E_e)^2 - m(v_i)^2}$$

essentially phase space: p_e E_e E_v p_v

with "electron neutrino mass": " $\mathbf{m}(v_e)^2$ " := $\sum |U_{ei}|^2 \mathbf{m}(v_i)^2$, complementary to $0v\beta\beta$ & cosmology (modified by electronic final states, recoil corrections, radiative corrections)

WWU Direct determination of "m(v_e)" from β -decay (EC)

β: dN/dE = K F(E,Z) p E_{tot} (E₀-E_e)
$$\Sigma |U_{ei}|^2 \sqrt{(E_0-E_e)^2 - m(v_i)^2}$$

essentially phase space: p_e E_e E_v p_v

with "electron neutrino mass": " $\mathbf{m}(v_e)^2$ " := $\Sigma |U_{ei}|^2 \mathbf{m}(v_i)^2$, complementary to $0v\beta\beta$ & cosmology (modified by electronic final states, recoil corrections, radiative corrections)

Christian Weinheimer

KATRIN at Karlsruhe Institute of Technology working principle

Colloquium GSSI, 11.12.19

column density pd [1017 molecules / cm2]

Photos: source & transport section

The KATRIN Main Spectrometer: an integrating high resolution MAC-E-Filter

0.25

0.2 0.15E

0.1

0.05

-0.5

0.5

E-U (eV)

transmission function: $\Delta \mathbf{E} = \mathbf{E} \cdot \mathbf{B}_{\min} / \mathbf{B}_{\max}$ = 0.93 eV (2.7 eV) 18.6 kV retardation voltage, $\sigma < 60$ meV/years

energy resolution ($0\% \rightarrow 100\%$ transmission): 0.93 (2.7) eV Ultra-high vacuum, pressure < 10⁻¹¹ mbar

Precision voltage (ppm) at vessel and double layer wire electrode system

for background reduction and field shaping

Air coils for earth magnetic field compensation

Christian Weinheimer

Colloquium GSSI, 11.12.19

Focal Plane Detector

Focal plane detection system

- segmented Si PIN diode: 90 mm Ø, 148 pixels, 50 nm dead layer energy resolution ≈ 1 keV pinch and detector magnets up to 6 T post acceleration (10kV)
- active veto shield

8 sources of background investigated and understood:

7 out of 8 avoided or actively eliminated by:

- fine-shaping of electrodes
- very symmetric magnetic fields
- more negative wire electrode potentials
- LN2-cooled baffles in front of NEG pumps

1 out of 8 remaining:

caused by ²¹⁰Pb on spectrometer walls neutral, but highly excited (Rydberg) atoms ionized by black-body radiation (300K) inside spectrometer volume

Background due to ionization of Rydberg atoms sputtered off by α decays

Rydberg (or autoionsing) atoms:

- ejected from walls due to ²⁰⁶Pb recoil ions from ²¹⁰Po decays
- ionized by black body radiation (291 K)
- non-trapped electrons on meV-scale
- bg-rate: ~0.5 cps

Testing this hypothesis:

artifically contaminating the spectrometer with implanted short-living daughters of ²²⁰Rn (and ²¹⁹Rn)

Countermeasures:

- apply stronger voltage at wires (field ionisation)
- reduce flux tube (on cost of energy resolution)
- shift analysis plane (tested, planned for 2020)
- active de-excitation ?
- coverage of surface with clean layer ?

Christian Weinheimer

WWU First Tritium (2-week engineering run in 2018)

- First Tritium:
- low tritium concentration:
 - ~1% DT and ~99% D₂
- functionality of all system components at nominal column density ρd (5.10¹⁷ cm⁻²)

KATRIN Collab., "First operation of the KATRIN experiment with tritium", arXiv:1909.06069

First tritium campaign: Stability of source parameters during 12 h

The measurement principle

Direct shape measurement of integrated β spectrum

Four fit parameters:

~10⁻⁹ of all β -decays in scan region ~40 eV below endpoint

M. Kleesiek et al., Eur.Phys.J. C79 (2019) 204

KATRIN science run #1

- 4-week long measuring campaign in spring 2019 with high-purity tritium
- April 10 May, 13 2019: 780 h
- high-purity tritium

(ε_{T} = 97.5 % by laser-Raman spectr.)

- high source activity (22% nominal): 2.45 · 10¹⁰ Bq
- high-quality data collected
- full analysis chain using two independent methods

KATRIN science run #1

first ever large-scale throughput of high-purity tritium in closed loops

- 22% of nominal source activity (column density)

⇒ limits effects due to radiochemical
 reactions of T₂ (initial "burn in" effect)

- high isotopic tritium purity

4.99

⇒ T₂ (95.3 %), HT (3.5 %), DT (1.1 %)

day

Time-of-flight of electrons from pulsed e-gun (70 ns at 20 kHz): \rightarrow High-pass filter turned into narrow band-pass \rightarrow recover "differential" spectrum

"Differential Time-of-flight mode" Nucl. Inst. Meth. A 421 (1999) 256,

Fitting tritium ß-decay spectrum

High-statistics ß-spectrum

- 2 million events in in 90-eV-wide interval (522 h of scanning, 274 indiv. scans)
- fit with 4 free parameters: $m^{2}(v_{e}), R_{bg}, A_{s}, E_{0}$ excellent goodness-of-fit $\chi^{2} = 21.4$ for 23 d.o.f. (p-value = 0.56)

Bias-free analysis

- blinding of FSD
- full analysis chain first on MC data sets
- final step: unblinded FSD for experimental data

Analysis methods and v-mass result

WWU MOORE'S law of direct v-mass sensitivities

KATRIN 2019 – 2024: a new, much steeper slope for Moore's law

Outlook: Background reduction

Further background reduction

WWU

- \Rightarrow spectrometer bake-out successful \blacksquare
- ⇒ more effective LN₂-cooled baffles
 - by pumping \rightarrow lowering temperature \rightarrow better ²¹⁹Rn retention
- Volume dependent background rate
 - $\boldsymbol{\cdot}$ reduce the volume of the flux
 - \Rightarrow upgraded air coil system \mathbf{V}
 - ⇒ "shifted analyzing plane" (SAP) ☑
 - \rightarrow factor 2 signal/background improvement
 - background & calibration & tritium scans

Outlook: keV sterile neutrino search with KATRIN

- 4-th mass eigenstate of neutrino mixed with the flavour eigenstates
 - particle beyond the standard model
 - Dark matter candidate
- Look for the kink in the $\beta\text{-spectrum}$
- TRISTAN project in KATRIN
 - developing a new detector & DAQ system
- large count rates
- good energy resolution
- Silicon Drift Detector

segmented Si-PIN wafer

S. Mertens et al., J.Phys. G46 (2019) 065203; T. Brunst et al., JINST 14 (2019) P11013

KATRIN's sensitivity of 200 meV might not be enough Can we go beyond or improve KATRIN ?

Problem: The KATRIN source is already opaque

requests larger spectrometer, but a Ø100m spectrometer is not feasible o. \rightarrow need to increase size transversally magnetic flux tube conservation

Possible ways out:

- a) make better use of the electrons by differential measurement (e.g. cryo bolometer array or TOF) additional to integral threshold:
 - \rightarrow measure all retarding voltage settings at once additional benefit: significant background reduct.
- b) source inside detector (compare to $0\nu\beta\beta$) using cryogenic bolometers (ECHo, HOLMES, ..)

KATRIN's sensitivity of 200 meV might not be enough Can we go beyond or improve KATRIN ?

Problem: The KATRIN source is already opaque

requests larger spectrometer, but a Ø100m spectrometer is not feasible o. \rightarrow need to increase size transversally magnetic flux tube conservation

Possible ways out:

- a) make better use of the electrons by differential measurement (e.g. cryo bolometer array or TOF) additional to integral threshold:
 - \rightarrow measure all retarding voltage settings at once additional benefit: significant background reduct.
- b) source inside detector (compare to $0\nu\beta\beta$) using cryogenic bolometers (ECHo, HOLMES, ..)
- c) hand-over energy information of b electron to other particle (radio photon), which can escape tritium source (Project 8)

Project 8's goal: Measure coherent cyclotron radiation of tritium β-electrons

PROJECT 8

General idea:

B. Monreal and J. Formaggio, PRD 80 (2009) 051301

• Source = KATRIN tritium source technology :

uniform B field + low pressure T₂ gas $\beta \text{ electron radiates coherent}$ cyclotron radiation $\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{e B}{K + m_e}$

But tiny signal: P (18 keV, θ =90°, B=1T) = 1 fW

• Antenna array (interferometry) for cyclotron radiation detection

since cyclotron radiation can leave the source and carries out the information

 T_2 gas

Project 8: phase I (^{83m}Kr) and II (tritium) **Proof of principle** Region of interest near the 30.4 keV lines

30.45

30.50

19.0

<u>+</u>	
	WWU
	MÜNSTER

Conclusions

Neutrino masses are non-zero:

- and are very important for astrophysics & cosmology & particle physics

KATRIN:

- is the direct neutrino mass experiment complementary to cosmological analyses and $0\nu\beta\beta$ searches
- can also look for sterile neutrinos (eV, keV with TRISTAN detector) and other BSM physics
- has performed successful first neutrino mass science run in 2019 vielding a limit of 1.1 eV for the neutrino mass
- is currently performing science run 2 with higher statistics
- Thank you for your attention ! - has the sensitivity goal of 200 meV for 5 years running

Beyond KATRIN:

- Can we upgrade KATRIN by time-of-flight or cryo-bolometer?
- ¹⁶³Ho micro calorimeters (ECHo, HOLMES, ...)
- New ideas like Project 8, ...

3 very important founding members passed away on the long road of KATRIN

