ASICs for SiPM Readout for fast timing and PET applications

Manuel Da Rocha Rolo

INFN Torino

GSSI June 19th, 2018

Basics of Time-of-Flight PET

Time of Flight PET Systems

Conventional PET/ ToF off

Adapted from: D. Schaart "Prospects for sub-100 picosecond TOF-PET", LPC Clermont-Ferrand, 12-Mar-2014

Manuel Da Rocha Rolo (INFN Torino)

ASICs for SiPM Readout

• TOF for improving equivalent sensitivity

- TOF capability $CTR = 200 \ ps \Rightarrow \Delta x = 3 \ cm$
- WBS, patient torso \approx 30 *cm*
- Gain of 10x in sensitivity¹
- More signal, less noise: higher SNR
- Sharper image, or shorter exam time, or lower tracer dose

TOF for background rejection

TOF for direct reconstruction

⁺counting sensitivity: fraction of emitted *gamma* that are detected

• TOF for improving equivalent sensitivity

- TOF capability $CTR = 200 \ ps \ \Rightarrow \Delta x = 3 \ cm$
- WBS, patient torso pprox 30 cm
- Gain of 10x in sensitivity¹
- More signal, less noise: higher SNR
- Sharper image, or shorter exam time, or lower tracer dose

• TOF for background rejection

• Endoscopic PET: need to reject background from other organs

TOF for direct reconstruction

¹counting sensitivity: fraction of emitted gamma that are detected

• TOF for improving equivalent sensitivity

- TOF capability $CTR = 200 \ ps \ \Rightarrow \Delta x = 3 \ cm$
- WBS, patient torso \approx 30 cm
- Gain of 10x in sensitivity¹
- More signal, less noise: higher SNR
- Sharper image, or shorter exam time, or lower tracer dose
- TOF for background rejection
 - Endoscopic PET: need to reject background from other organs
- TOF for direct reconstruction
 - Clinical PET 2 $mm < \Delta x < 4 \ mm \Rightarrow CTR = 20 \ ps$
 - no need for image reconstruction
 - Real Time 3D Imaging

¹counting sensitivity: fraction of emitted *gamma* that are detected

Manuel Da Rocha Rolo (INFN Torino)

ASICs for SiPM Readout

• TOF for improving equivalent sensitivity

- TOF capability $CTR = 200 \ ps \ \Rightarrow \Delta x = 3 \ cm$
- WBS, patient torso \approx 30 cm
- Gain of 10x in sensitivity¹
- More signal, less noise: higher SNR
- · Sharper image, or shorter exam time, or lower tracer dose

• TOF for background rejection

• Endoscopic PET: need to reject background from other organs

• TOF for direct reconstruction

- Clinical PET 2 $mm < \Delta x < 4 \ mm \Rightarrow CTR = 20 ps$
- no need for image reconstruction
- Real Time 3D Imaging

¹counting sensitivity: fraction of emitted gamma that are detected

Manuel Da Rocha Rolo (INFN Torino)

Concept of fast timing requires the definition of the application context:

- * Timing in the context of TOF-PET refers to Coincidence resolving time, or Coincidence time resolution (CRT, CTR)
 - $\,\hookrightarrow\,$ precision on resolving the time of arrival of the 2 back-to-back $\gamma\text{-photons}$
- The performance of state-of-the-art PET scanners based on LYSO and SiPMs is currently not limited by the front-end electronics
- **★** Fast timing, today, refers to the 10 ps holy-grail
- * performance (SPTR) of SiPM is quickly approaching this benchmark
- ★ a lot is going on the development of new scintillators (e.g. nano-structuring of the crystal surfaces), but...
- \star indeed, the scope of PET imaging is likely to be extended beyond crystals
- * and, innovative electronics and detectors (other than SiPMs?) are needed

Concept of fast timing requires the definition of the application context:

- * Timing in the context of TOF-PET refers to Coincidence resolving time, or Coincidence time resolution (CRT, CTR)
 - $\,\hookrightarrow\,$ precision on resolving the time of arrival of the 2 back-to-back $\gamma\text{-photons}$
- * The performance of state-of-the-art PET scanners based on LYSO and SiPMs is currently not limited by the front-end electronics
 - $\,\hookrightarrow\,$ FEE should preserve the intrinsic performance of the detector
 - $\hookrightarrow\,$ contribution of FEE to SPTR with aSiPMs is below 30 ps
- **★** Fast timing, today, refers to the 10 ps holy-grail
- performance (SPTR) of SiPM is quickly approaching this benchmark
- ★ a lot is going on the development of new scintillators (e.g. nano-structuring of the crystal surfaces), but...
- \star indeed, the scope of PET imaging is likely to be extended beyond crystals
- * and, innovative electronics and detectors (other than SiPMs?) are needed

Concept of fast timing requires the definition of the application context:

- * Timing in the context of TOF-PET refers to Coincidence resolving time, or Coincidence time resolution (CRT, CTR)
 - $\,\hookrightarrow\,$ precision on resolving the time of arrival of the 2 back-to-back $\gamma\text{-photons}$
- * The performance of state-of-the-art PET scanners based on LYSO and SiPMs is currently not limited by the front-end electronics
 - $\,\hookrightarrow\,$ FEE should preserve the intrinsic performance of the detector
 - $\,\hookrightarrow\,$ contribution of FEE to SPTR with aSiPMs is below 30 $\,{\rm ps}$
- ★ Fast timing, today, refers to the 10 ps holy-grail
- $\star\,$ performance (SPTR) of SiPM is quickly approaching this benchmark
- \star a lot is going on the development of new scintillators (e.g. nano-structuring of the crystal surfaces), but...
- \star indeed, the scope of PET imaging is likely to be extended beyond crystals

 \star and, innovative electronics and detectors (other than SiPMs?) are needed

Concept of fast timing requires the definition of the application context:

- * Timing in the context of TOF-PET refers to Coincidence resolving time, or Coincidence time resolution (CRT, CTR)
 - $\,\hookrightarrow\,$ precision on resolving the time of arrival of the 2 back-to-back $\gamma\text{-photons}$
- * The performance of state-of-the-art PET scanners based on LYSO and SiPMs is currently not limited by the front-end electronics
 - $\,\hookrightarrow\,$ FEE should preserve the intrinsic performance of the detector
 - $\,\hookrightarrow\,$ contribution of FEE to SPTR with aSiPMs is below 30 $\,{\rm ps}$
- ★ Fast timing, today, refers to the 10 ps holy-grail
 - \star performance (SPTR) of SiPM is quickly approaching this benchmark
 - \star a lot is going on the development of new scintillators (e.g. nano-structuring of the crystal surfaces), but...
 - $\star\,$ indeed, the scope of PET imaging is likely to be extended beyond crystals
 - * and, innovative electronics and detectors (other than SiPMs?) are needed

- Applications requiring large number of electronic channels and high channel density (e.g PET instrumentation) will require the development of custom integrated electronics
- Typically, all timing systems will call for:
 - * low-power
 - ⋆ low-noise
 - ★ high GBW
 - ⋆ low input impedance

• Different ideas ightarrow Different detectors and applications ightarrow Different solutions:

photosensors (SiPMs, APDs, PMTs, LGADs)

- crystal one-to-one matching or light sharing with monolithic blocks
- small-animal, dedicated scanner, full-body scanner
- DOI reconstruction techniques (crystal patterning, double-side readout)
- RT or cryogenic operation
- performance optimisation or cost-driven

- Applications requiring large number of electronic channels and high channel density (e.g PET instrumentation) will require the development of custom integrated electronics
- Typically, all timing systems will call for:
 - * low-power
 - ⋆ low-noise
 - ★ high GBW
 - \star low input impedance
- $\bullet~$ Different ideas $\rightarrow~$ Different detectors and applications $\rightarrow~$ Different solutions:
 - photosensors (SiPMs, APDs, PMTs, LGADs)
 - crystal one-to-one matching or light sharing with monolithic blocks
 - small-animal, dedicated scanner, full-body scanner
 - DOI reconstruction techniques (crystal patterning, double-side readout)
 - RT or cryogenic operation
 - performance optimisation or cost-driven

Methods for time and energy pick-off with SiPMs

• Sampling Techniques (e.g. SAMPIC, DSR)

- Potentially best time and energy resolution
- Manageable complexity only for moderate dynamic range

• Time-based Readout (e.g. TOFPET, STiC, TRIROC, PETAx)

Constant fraction

- Reduces time-walk, potential better time resolution
- Difficult to implement if signal shape is unknown
- Difficult to implement for high dynamic range

Single threshold

- Easiest circuit topology
- No hit rejection
- Excessive jitter for ToT measure? (reduced slope, de-excitation (e.g. L(Y)SO)
- Multiple threshold
 - Easy circuit topology
 - Low-threshold for good timing
 - High-threshold for dark count rejection and ToT measurement
 - · Energy measurement can be used for time-walk correction
 - Low jitter requires very fast and low-noise front-end

Timing systems: single sample

- The sensor signal is usually amplified and shaped
- A comparator generates a digital pulse
- The threshold crossing time is captured and digitized by a TDC
- TDC can be embedded on the front-end chip or external
- Timing is derived from a single sample

- The sensor signal is usually amplified and shaped
- The full waveform is sampled and digitized at high speed
- In many systems, sampling and digitization are decoupled
- Timing is extracted with DSP algorithms from the digitized waveform samples
- Timing is derived from multiple samples

- $\star\,$ possible sketch of a stack-up SiPM + FEB
- Chip-on-board, wire-bonding or flip-chip (FEB hosting ASIC, LDOs, connectors)

- $\star\,$ ideally, a 4-side abuttable module for large system integration
- * 2 or 3-tier stack (analogue and digital FEBs)

Example of a 128-channel 50 mm^2 integrated electronics front-end module for sensor readout (INFN-TO)

Trends on a-SiPM and readout electronics integration

Wish list for PET system integrators:

Likely features of an a-SiPM digital tile for ToF-PET scanners:

- Pixel size O(3x3 mm²)
- 64 or 128 channels on tile
- power consumption (5 mW)
- fully digital interface
- time and energy measurement

Trends on a-SiPM and readout electronics integration

 \hookrightarrow Wish list for PET system integrators:

Likely features of an a-SiPM digital tile for ToF-PET scanners:

- Pixel size O(3x3 mm²)
- 64 or 128 channels on tile
- power consumption (5 mW)
- fully digital interface
- time and energy measurement

★ Time to Market: 2018-2020

- early adopters using a-SiPMs and custom ASICs for system integration
- 100 ps target ballpark thoroughly demonstrated on-lab with a-SiPMs
- $\bullet\,$ PET scanner vendors report (from 2017) 200-250 ps CRT system-level performance with SiPMs and LSO
- many (really many) mixed-signal readout ASICs for SiPMs developed since 2010
- Some examples of ready-to-market or commercially available devices:

Triroc Description

- Full system-on-chip :
 - On-chip zero suppress, self trigger, Time and energy conversion
- 64-channel SiPM readout : positive & negative polarity inputs
- Input DAC for SiPM gain non-uniformity correction
- Time Stamp and ADC charge outputs
- 64-channel trigger outputs
- Power Pulsing : Analog, ADC & Digital
- Event rate : 30k events/s, limited by digital processing

STiC : readout principle

- 64-ch SiPM readout ASIC for Time-of-Flight applications
- UMC 0.18µm CMOS
- Time + (linearized) Energy based on timing measurements
- Analog Frontend + TDC + Digital
- Single-ended (cathode/anode) / differential input
- SiPM bias tuning (\sim 500mV)

STiC – Major specs

TDC bin size	50.2ps@625MHz		
TDC DNL	< 0.3 LSB		
T threshold range	0.3 – 10 p.e.		
E threshold range	> ~4 p.e.		
Q inj. Jitter	<20ps		
DAC range	>0.5V		
Q resonse	Linear > 2.5pC		
power	$\sim 25 mW/ch$		
Norminal data rate	40KHz/ch		

FP7 EndoTOFPET-US: combined (Time-of-Flight)

PET, ultrasound imaging and endoscopic biopsy

- Need to extract of TOF information to enable endoscopic imaging (enhance SNR)
- FE electronics with very good timing, low-noise, low-power, high density
- TOFPET ASIC developed by LIP in the framework of FP7/EndoTOFPET-US project

The 64-channel TOFPET chip in a nutshell:

- amplification, signal condit. and time-to-digital conversion
- 25 ps r.m.s. intrinsic resolution
- fully digital output, data rate up to 640 Mb/s
- optimized for low-power (less than 10 mW p/channel) and high-rate (160 kHz/channel)

M D Rolo et al, TOFPET ASIC for PET applications, 2013 JINST 8 C02050 M D Rolo et al, A low-noise CMOS front-end for TOF-PET, 2011 JINST 6 P09003

TOFPET: Overview of the channel architecture

- gm-boosted common-gate input stage, allows SiPM HV bias adjustment Positive or negative signal polarity
- Charge measured with Time-over-threshold
- Time and charge measurements with independent TDCs
 - t0: 50 ps time stamp from rising edge of DOT
 - t2: 50 ps time stamp from falling edge of DOE
- Trigger level **0.5 p.e.** with SNR = 25 dB
- Low-power 8-11 mW p/channel

TOFPET: Overview of the chip architecture

The TOFPET ASIC is a 64-channel analogue mixed-signal chip, output is fully digital. The periphery of the chip hosts the calibration and bias circuitry.

- LVDS 10 MHz SPI configuration link and dark count measure
- 2x LVDS up to 640 Mbps data output interface; 8B/10B encoding
- On-chip DACs and reference generators

TOFPET: characterization results

• Single-photon time resolution (420nm light pulser)

• MPTR: 32 ps sigma (intrinsic time resolution of channel)

- CTR: 310 ps FWHM
 - Two LYSO 4x4 crystal matrices: crystal size 3.5 x 3.5 x 15 mm³
 - 16-channel MPPC 3x3 mm² matrix

PETsys TOFPET2 ASIC

From analog frontend to digital system interface

- 64 independent channels in 5x5 mm²
- Standard CMOS 110 nm
- Positive or negative signal polarity
- Dynamic range 100 fC 1500 pC
- Noise 1.5 mV (1 p.e. ~ 30 mV)
- Charge integration ADC 10 bit
- TDC time binning 30 ps
- Low power: <12.5 mW/Ch
- Very high event rate capability up to 30 Mcps per ASIC *)
- On-chip calibration circuitry

TOFPET2 chip-on-board

- CTR measurements were performed with individual LYSO crystals of 3x3x5 mm³ glued to SiPMs 3x3mm² of several producers
- One-to-one crystal-SiPM coupling with the same area
- The uncertainty of these measurements is estimated at 15 ps. The observed differences between the three SiPMs are not statistically significant.

SiPM type	SiPM area (mm2)	Over-voltage (V)	CTR FWHM (ps)
KETEK-PM3325-WB	3x3	4	229
HPK MPPC S13361- 3050AE-04	3x3	5.5	215
SensL ArrayJ-30035- 64P-PCB	3x3	5	228

CTR with LYSO array of 4x4x15mm AC coupling; T=18 °C

Broadcom array AFBR-S4N44P163; 30 μm cells OV= 8.5 V T=18 °C

Coincidence Time Resolution for a sample of detector pairs

- Remarkable set of measurements with TOFPET2, a 64-channel ASIC for SiPM readout and digitization in TOF applications:
 - Amplifier noise $\sigma \sim 0.1$ p.e. rms
 - TDC DNL<0.1 LSB; INL<1 LSB</p>
 - Time resolution: 26 ps r.m.s
 - SPTR = 90 ps r.m.s (w/ HPK S31361-3050 @ 7.5 V over-voltage)
 - CTR = 127 ps FWHM (w/ LYSO 2x2x3 mm3 ;NUV-SiPM 4x4 mm FBK / Broadcom)
 - ADC DNL <0.5 LSB; INL<1 LSB</p>
 - Charge integration noise: 0.65 LSB r.m.s.
 - Energy resolution 511 keV = 10.5% (w/ LYSO; SiPM KETEK PM3325)

- \bigstar Hybrid CMOS and aSiPM matrix (mm-range pixel), or
- ★ 3D-SiPM matrix mounted on top of a CMOS wafer
- ★ <u>Back-side illuminated</u> or <u>Front-side illuminated with TSVs</u>

Next generation 3D digital SiPM for precise timing resolution

Jean-François Pratte

F Nolet, W. Lemaire, F. Dubois, N. Roy, S. G. Carrier, A. Samson, G. St-Hilaire, S. A. Charlebois, R. Fontaine

Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke

14th Frontier Detectors for Frontier Physics 2018

Benefits of Digital SiPM for TOF-PET

Advantages

- 1 TDC per SPAD
- Uniform SPTR per pixel
- SPAD to SPAD skew correction

Cons of 2D implementation

- Low fill factor
- Same process for SPAD and CMOS
- No room for digital signal processing

Next Generation 3D Digital SiPM with CMOS 65 nm readout

3D Integration

- High fill factor
- · Heterogeneous technologies integration:
 - SPAD array: <u>Teledyne-Dalsa</u> custom process
 - TSMC CMOS 65 nm 256 SPAD readout ASIC

3D a-SiPMs?

- CMOS 1024-pixel readout ASIC for fast timing applications developed by INFN-TO
- UMC 110nm technology
- Pixel size 400 μ m, 32x32 pixel matrix, approx 250 mm²

- flip-chip mounted to a photosensor (*top right*). Detail of bonding pads (*bottom*) and bonding scheme for data and power
- The first-silicon ASIC performs single-photon time-tagging with a 30 ps r.m.s. time resolution, up to 200 kHz per pixel

Manuel Da Rocha Rolo (INFN Torino)

ASICs for SiPM Readout

ALCOR - A Low Power Chip for Optical Sensor Readout

- Development in the framework of the **Darkside Collaboration**, targets operation at 87K
- 32-pixel matrix mixed signal ASIC
- amplification, signal conditioning and event digitisation, and features fully digital I/O.
- each pixel reads an SiPM (up to 1 cm², compatible with smaller pixels)
- Pixel hosts SiPM VFE, LET discriminator, 4 TDCs, control and interface
- Single-photon time tagging mode <u>or</u> time and charge measurement
- 64-bit (32-bit on time tagging mode) event data generated on-pixel
- Up to 4 LVDS TX data links used, SPI for chip configuration
- operation from 10 MHz up to 320 MHz (TDC binning down to 50 ps)

Manuel Da Rocha Rolo (INFN Torino)

ALCOR - A Low Power Chip for Optical Sensor Readout

- Development in the framework of the **Darkside Collaboration**, targets operation at 87K
- 32-pixel matrix mixed signal ASIC
- amplification, signal conditioning and event digitisation, and features fully digital I/O.
- each pixel reads an SiPM (up to 1 cm², compatible with smaller pixels)
- Pixel hosts SiPM VFE, LET discriminator, 4 TDCs, control and interface
- Single-photon time tagging mode <u>or</u> time and charge measurement
- 64-bit (32-bit on time tagging mode) event data generated on-pixel
- Up to 4 LVDS TX data links used, SPI for chip configuration
- operation from 10 MHz up to 320 MHz (TDC binning down to 50 ps)
- Towards 3D hybrid integration

Manuel Da Rocha Rolo (INFN Torino)

ASICs for SiPM Readout

Outlook for SiPM readout on a Million-Channel LAr PET Scanner

- Room Temperature mixed-signal ASICs for SiPM readout available for system-level integration on Time-of-Flight PET instruments
- LYSO-SiPM based PET scanners' performance limited by scintillation statistics
- LAr and LXe could become core technologies towards the 10's ps range ?
- Research on Dark Matter and Neutrino Experiments could produce innovative integrated electronics for fast timing in cryogenic temperature
- INFN promoting and developing cryogenic integrated circuits for Darkside-20K
- INFN Collaboration with Sherbrook University on the study of silicon interposer technology
- INFN Collaboration with PSI, BNL, Fermilab, Sherbrook on CMOS modelling for cryogenic operation
- Ramp-up of INFN-LFoundry technical assessment for advanced sensor integration and development of large active silicon interposers for cryogenic applications

