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DETECTING SINGLE PHOTONS 
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Photo-multiplier tube 
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30x30 mm 

From  1 to 2000 cm2 



PMTs largely used 
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13000 PMTs 

 φ =    



Scientific CCD 
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18 x 16  Mpixels CCD  15 ×  μ  

Readout noise 2 e- 

About  106 channels/cm2 



SiPM 
• The use of SiPM is rapidly increasing both for scientific and for industrial 

applications 
– High gain, high PDE, compact form 

– Sensitive to single photons 
 

• SiPM can be read as pixels or as aggregate devices 
– Pixels can be as small as the microcell (10-50 μm scale) 

– SiPM typical size 1-100 mm2 

– Several integrated chips can read-out many SiPM in aggregated structures  
 

• For scientific applications a photo-multiplier tube replacement is desirable 
– Aggregating the SiPM to a total surface of many cm² 

• But given the high DCR this is typically interesting only at cryogenic temperature 

 

• This talk will focus on FBK NUV-HD SiPM from FBK 
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SiPMs 
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A Single Photon Avalanche Diode operates in Geiger mode 
• The intrinsic capacitance of the SPAD is named Cd  

• The intrinsic resistance of the SPAD is named Rd 

• The SPAD has a quenching resistance Rq to stop the avalanche 

• The quenching exhibits a parasitic capacitance Cq 

• At Vbias > Vbreakdown the avalanche is possible 

• With gain G = Vov Cd  where Vov = Vbias - Vbreakdown  

A SiPM is a collection of N SPAD of typical size 20-50 um 

• A signal is generated when Nf SPADs are triggered 

Accurate electrical models exist to describe the signal and 

overall electrical parameters of the SiPMs 
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SiPMs at cryogenic temperature 

• Dark noise reduction by more than 7 

orders of magnitude 
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• Increased afterpulse 

• Lower gain operation 

SiPMs at cryogenic temperature 

• Dark noise reduction by more than 7 

orders of magnitude 

NUV-HD-SF 

At a given temperature and overvoltage 

  higher Rq -> longer recharge time 

                    -> lower triggering probability in 

                         the same cell 

                    -> lower afterpulse probability 

                    -> lower divergence probability 
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SiPMs at cryogenic temperature 

• Dark noise reduction by more than 7 

orders of magnitude 

• Increased afterpulse 

• Lower gain operation 

• For poly-silicon based Rq 

• Rq strongly depends on T 

• Pulse shape changes 

• longer recharge time 

NUV-HD-SF 
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SiPMs at cryogenic temperature 

• Dark noise reduction by more than 7 

orders of magnitude 

• Smaller peak current 

• Increased afterpulse 

• Lower gain operation NUV-HD-SF 

• For poly-silicon based Rq 

• Rq strongly depends on T 

• Pulse shape changes 

• longer recharge time 

F. Acerbi et al., IEEE TED 64,2,17 12 



LIGHT SENSOR READOUT 
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Light sensor readout 
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Light sensors convert photons into charge 

• Transformed in a current by an electric field 
 

Photo-sensors are modeled as a current generator with a 

source capacitance Cd 

• Plus an additional load resistor Rl (intrinsic leakage of the 

device and/or quenching resistor) 
 

Typical values for Cd are in the range of 0.1-100 pF 
 



Light sensor readout 
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Light sensors convert photons into charge 

• Transformed in a current thank to an electric field 
 

Photo-sensors are modeled as a current generator with a 

source capacitance Cd 

• Plus an additional  load resistor Rl (intrinsic leakage of the 

device and/or quenching resistor) 
 

Typical values for Cd are in the range of 0.1-100 pF 
 Simplified electrical model 



Light sensor readout 
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Light sensors convert photons into charge 

• Transformed in a current by an electric field 
 

Photo-sensors are modeled as a current generator with a 

source capacitance Cd 

• Plus an additional load resistor Rl (intrinsic leakage of the 

device and/or quenching resistor) 
 

Typical values for Cd are in the range of 0.1-100 pF 
 

Several amplifier configurations  are available for detecting 

small currents 

• The most common is the trans-impedance amplifier  (TIA) 

• An alternative design is provided by the charge amplifiers 



Current amplifiers 
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• Both TIA & charge amplifiers are based on an inverting topology 

• V- = V+ implies that the amplifiers provides a -|IPH| along the 

feedback path 

• At high frequency the noise gain is defined by CIN/CF  

• CIN directly impact the rise time of the amplifier 
 

For transimpedance amplifiers RF < 10 kΩ 

• The output signal is –IPH ∙ RF 

• The CF capacitor is required to maintain the circuit stable 

• Can be as small al 0.1 pF 
 

For charge amplifiers Rf > 100 MΩ 

• The output signal is –QPH / CF 
 

The two circuits seem similar but are very different 

Virtual GND 



Charge amplifiers 
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G.Bertuccio, S.Caccia, NIM A579, 2007 

G.Bertuccio, Jinst 2015 



LOW NOISE AMPLIFIERS 

19 



Heterojunction electronics 
For fast TIA amplifiers with Rf ~ 1-10 kΩ 

• n(Rf) << en * NG  &  in * Rf << en * NG 

MOS technology typically 

• en ~  V/√Hz  &  in ~  fA/√Hz 

MOS technology may not be the best 

choice  
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Heterojunction electronics 

• Most producers are distributing heterojunction BJT based amplifiers 
– For high bandwidth applications  GHz 

– For very low noise applications  sub- V/√Hz 

 

• HBTs are great signal amplifiers at cryogenic temperature 
– They are BJT  -> very low en 

– Low 1/f noise 

– Noise and BW are better at cryogenic temperature 

For fast TIA amplifiers with Rf ~ 1-10 kΩ 

• n(Rf) << en * NG  &  in * Rf << en * NG 

MOS technology typically 

• en ~  V/√Hz  &  in ~  fA/√Hz 

MOS technology may not be the best 

choice  
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LMH6629 characterization 
LMH6629 from TI: 

• Works down to 40 K 

• Stable for |Av| > 10 

• Very high bandwidth 

• Increasing at low T 

• ~0.2 pF in Fb path 

• Very low noise 

• Max bias 5 V 

• 60 – 80 mW 

• Pout1dB = 16 dBm 
(3.8 Vpp) 
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LMH6629 Noise Model 

 Where: 

• Req accounts for all resistors 

• en is modeled as a Johnson source 

• in is modeled as Shotky noise of |ib| + |io| 

• N is the output noise density @ 1MHz 

 The fit reproduces the data at better than 

2.5 % 

The voltage noise density of the LMH6629 is equivalent to a 20 Ω resistor 

constant 

M D’I e o et al., IEEE TNS , , 8 23 



SINGLE SIPM READOUT 
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SiPM simplified electric model 
• BW & output noise spectrum depends on the input load 
• A simplified model can be used 

– Valid if Nf << N 
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SiPM simplified electric model 

eq eq eq eq 

SiPM seen by a RLC bridge 

• BW & output noise spectrum depends on the input load 
• A simplified model can be used 

– Valid if Nf << N 
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SiPM simplified electric model 

eq eq eq eq 

SiPM seen by a RLC bridge 

• BW & output noise spectrum depends on the input load 
• A simplified model can be used 

– Valid if Nf << N 

• A transition happens at FT = 1/(2 π Rq Cq) ~ 20- 30 MHz 
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To be compared to 

photodiodes  0.1 – 100 pF 



SiPM simplified electric model 

N Cd 

N Cq 

eq eq eq eq 

SiPM seen by a RLC bridge 

• BW & output noise spectrum depends on the input load 
• A simplified model can be used 

– Valid if Nf << N 

• A transition happens at FT = 1/(2 π Rq Cq) ~ 20- 30 MHz 
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SiPM simplified electric model 

N Cd 

N Cq 

eq eq eq eq 

SiPM seen by a RLC bridge 

• BW & output noise spectrum depends on the input load 
• A simplified model can be used 

– Valid if Nf << N 

• A transition happens at FT = 1/(2 π Rq Cq) ~ 20- 30 MHz 

– But at cryogenic temperature Rq increases 
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SiPM simplified electric model 
• BW & output noise spectrum depends on the input load 

N Cd 

N Cq 

eq eq eq eq 

SiPM seen by a RLC bridge 

N
o
is

e
 

• This transition is important because it affects the noise gain: 

– The capacitance decreases   GOOD 

– The series resistance (Rq/N) vanishes BAD 

 

• A simplified model can be used 

– Valid if Nf << N 

• A transition happens at FT = 1/(2 π Rq Cq) ~ 20- 30 MHz 

– But at cryogenic temperature Rq increases 

 

Model 
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Req 

Ceq 

TIA design & results on single SiPMs 

Standard Transimpedance design except: 

• Few tweaks for stabilization 

• R+ , R-, Ci 

• Cf is due to parasitic effects (~0.2 pF) 

• The series resistor Rs 

31 



5x5 mm  @ 300K 

SNR = 27.7 @ 5 VoV 

                      (1.3 106) 

Req 

Ceq 

TIA design & results on single SiPMs 
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5x5 mm  @ 300K 

SNR = 27.7 @ 5 VoV 

                      (1.3 106) 

1x1 cm²  @ 77K 

                 G = 106 

SNR = 18 

1PE resolution: 0.06 

1x1 cm² & G = 106 

1x1 cm² 

Req 

Ceq 

TIA design & results on single SiPMs 
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Matched filtering 

Matched filter is the optimal linear filter to extract a signal of 

know shape in the presence of additive stochastic noise. 

The filtered signal is obtained by cross-correlating the raw 

waveform for the signal template 

The output is symmetric around the peak, giving a better 

identification of the timing. 

We successfully tested an online FPGA based implementation 
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Timing 
1 cm2 @ 77 K: 

Using matched filter 

Gain 106  

SNR = 30 
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Timing 
1 cm2 @ 77 K: 

Using matched filter 

Gain 106  

SNR = 30 
SNR = 18 

1PE resolution: 0.06 
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Timing 
1 cm2 @ 77 K: 

Using matched filter 

Gain 106  

Jitter = 1 ns 

SNR = 30 
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Req 

Ceq 
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10% of noise 

1 cm2 @ 77 K: 

Rn = 20  Ω 

Rs = 20  Ω 

Req = 60  Ω 

Rf = 3.9 k Ω 

no = -141 dBm 

39 M D’I e o et al., IEEE TNS , , 8 



MULTIPLE SIPMS READOUT 
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6 cm² SiPM readout 

• To read more SiPMs with the same amplifier a 

partial ganging solution is used 

• This design increases the capacitance  seen by 

the TIA only by 50% 

• For cryogenic use a precision voltage divider is 

required 
• Otherwise the voltage division will be defined by the 

leakage current 

Req 

Ceq 
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6 cm² SiPM readout 

Req 

Ceq 
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6 cm² SiPM readout 

15% of noise 6 cm2 @ 77 K: 

Rn = 20  Ω 

Rs = 60  Ω 

Req = 60  Ω 

Rf = 10 k Ω 

no = -127 dBm 

Req 

Ceq 
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6 cm2 @ 77 K 
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6 cm2 @ 77 K 

5 VoV = 1.5 106 
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24 cm² @ 77 K 

4 x 6 cm2 quadrants 

are aggregated by 

an active cryogenic 

adder 

or OPA838 
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Low AP NUV 

PRELIMINARY 

Extended Gain SiPM for Cryogenic Application 

from FBK 

24 cm2 @ 77 K 8 VoV 
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Conclusions 
• Silicon detectors is an exciting field in evolution 

– Many options are open: Xrays, particle detectors, light detectors 

– Each application requires a custom readout strategy 

 

• SiPM development in continuous evolution: 
– Better SiPM 

– Integrated digital SiPM with μm pitch (Philips DPC, 3DSiPM from NEXO for cryo-compatible readout) 

– Integrated electronics for large matrix readout in development (INFN Torino for cryo-compatible readout) 

– Aggregated analog readout for large SiPM surfaces 

 

• Large SiPM arrays O(25 cm2) can be read with outstanding SNR and timing performances 
– SNR >> 10 & timing down to few ns 

– The main contribution to the noise is from the thermal noise of the quenching resistors itself (noise limit) 
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Thank you 
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The role of Rs 

Rs = 0 

Rs = 20 Ω 

For frequencies > FT the 

previous model is broken 

 

The presence of Rs limits the 

noise gain up to the natural 

bandwidth of the amplifier 

 

The result is an increased SNR  
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Zero-Pole cancellation 

For some application it is better to 

remove the recharge tail  

 

This can be achieved with zero-pole 

cancellation 

 

AD800x 

This solution does not avoid 

saturation of the front-end 
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ZPC Results 

VoV = 3.5  SNR = 10 

VoV = 4.5 

VoV = 5.5 

VoV = 6.5 

5x5 mm2 NUV-HD 

@ 300 K 

The resolution is 

affected by the DCR 

Inductors can not be 

used in cryogenic 
LMH6624 

Amplifier 

SiPM + Amplifier 

F3dB = 160 MHz 
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6 cm² SiPM readout 

6 cm2 @ 77 K: 

Rn = 20  Ω 

Rs = 60  Ω 

Req = 60  Ω 

Rf = 10 k Ω 

no = -127 dBm 

6 x 1 cm2 independent readout 
(with analog sum) 

 

 

 

/√  ~  ti es etter 
Req 

Ceq 
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6 cm² SiPM readout 

6 cm2 @ 77 K: 

Rn = 20  Ω 

Rs = 60  Ω 

Req = 60  Ω 

Rf = 10 k Ω 

no = -127 dBm 

Req 

Ceq 

Open space to integration?   It depends 

For simple TIA with MOS technology 

Typical en ~  V/√Hz <-> Rn(MOS) ~ 1 kΩ 

For smarter designs work in progress 

(see slides from Manuel Rolo) 

6 x 1 cm2 independent readout 
(with analog sum) 

 

 

 

/√  ~  ti es etter 
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24 cm² @ 77 K 

SNR = 13 

5 VoV <=> 1.5 106 

4 x 6 cm2 quadrants 

are aggregated by 

an active cryogenic 

adder 
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24 cm² @ 77 K 

SNR = 13 

jitter = 16 ns 

5 VoV = 1.5 106 

M D’I e o et al., IEEE TNS , , 8 
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Low AP NUV 
Extended Gain SiPM for Cryogenic Application 

from FBK 

PRELIMINARY 

Extended  Overvoltage at 77 K 

>  14 V 

Low afterpulse 

57 



Dummy load 
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Dummy load 

Noise spectrum with 6 cm²  

versus a dummy load  


