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Physical description
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1.1 The Efimov effect: a physical description 5

Vitaly Efimov in 1977

V. Efimov, “Weakly-bound states of 
three resonantly-interacting 
particles,” Yad. Fiz., 12, 1080–1091, 
November 1970, [Sov. J. Nucl. Phys. 
12, 589-595 (1971)].

V. Efimov, “Energy levels arising 
from resonant two-body forces in a 
three-body system.” Physics Letters 
B, 33, 563 – 564, 1970.

What is the Efimov effect?



What is the Efimov effect?

The appearance of an effective long-range three-body 
attractive force between three particles interacting 
via short-range two-body attractive forces

1.1 The Efimov effect: a physical description 6



Existence of an infinite number of Borromean states, 
i.e. three-body bound states in the absence of two-
body bound state.

This leads to remarkable properties:

Borromeo family emblem
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Existence of an infinite number of Borromean states, 
i.e. three-body bound states in the absence of two-
body bound state.

This leads to remarkable properties:

Borromeo family emblem

Discrete scale invariance of the spectrum: each three-
body state can be obtained from another by a scale 
transformation

Matryoshka (Russian nesting dolls)

Universality of the physical properties: they do not 
depend on the details of the two-body force, but only 
on two parameters.

1.1 The Efimov effect: a physical description 10



What is the origin of the Efimov effect?

• Is there an Efimov effect in classical physics?

𝑟

−𝑔

𝑉(𝑟)

Short-range attractive two-body interaction potential

𝑟

two-body 
bound states
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What is the origin of the Efimov effect?

• Is there an Efimov effect in classical physics?

𝑔
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𝑉(𝑟)
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No Borromean state
No Efimov effect

three-body 
bound states

two-body 
bound states
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What is the origin of the Efimov effect?
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• The quantum origin of the Efimov effect

three-body 
bound states

two-body 
bound states

Quantum fluctuations + interactions ⟹  critical strength 𝑔 (zero-point) and quantisation
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What is the origin of the Efimov effect?

𝑔

−3𝑔

three-body 
bound states
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• The quantum origin of the Efimov effect

Quantum fluctuations + interactions ⟹  critical strength 𝑔 (zero-point) and quantisation

three-body 
resonancesBorromean 

state

two-body 
bound states
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What is the origin of the Efimov effect?

𝑔

−3𝑔

three-body 
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• The quantum origin of the Efimov effect

three-body 
resonances

two-body 
bound states

Critical strengths 𝑔 for binding two particles ⟹  “unitarity”
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What is the origin of the Efimov effect?

𝑔

−3𝑔

three-body 
bound states
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• The quantum origin of the Efimov effect

Efimov effect

three-body 
resonances

two-body 
bound states

Critical strengths 𝑔 for binding two particles ⟹  “unitarity”
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What is the origin of the Efimov effect?

𝑔

“trimers”

Critical strengths 𝑔 for binding two particles ⟹  “unitarity”

1

2

3
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Borromean 
sector

• The quantum origin of the Efimov effect

5

“Efimov plot”

Infinite 
number of 
states

Universality: 𝜆0 ≈ 22.7 
same for any system
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Discrete scale invariance

× 𝜆0
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× 𝜆0
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What is the origin of the Efimov effect?

• The quantum origin of the Efimov effect

Why universality and scale invariance?

Short-range interaction At low-energy At “unitarity” (𝑎 → ∞)

No more length scale!
(Scale invariance)

Single physical scale:
“Scattering length” 𝑎

At the two-body level: 

“Low-energy universality”
“Short-range universality”
“Zero-range universality”

can be replaced by

𝑟

−𝑔

𝑉(𝑟)

Original interaction

𝑟

Parametrised 
only by 𝑎

𝑉(𝑟)

“Zero-range” interaction

The wave function is much larger 
than the range of interactions

1.1 The Efimov effect: a physical description 20



What is the origin of the Efimov effect?

• The quantum origin of the Efimov effect

Why infinitely many states?

At the three-body level: 

Effective three-body potential  𝑉 𝑅 ∝ −
ℏ2

𝑚

1

𝑅2 Scales like the kinetic 

energy 𝐾 ∝
ℏ2

𝑚

𝑑2

𝑑𝑅2

• Scale invariant equation
• Long-range attractive potential, may support 

infinitely many states

1.1 The Efimov effect: a physical description 21



What is the origin of the Efimov effect?

• The quantum origin of the Efimov effect

Why long range ? in spite of short-range two-body interactions?

1.1 The Efimov effect: a physical description

The Efimov attraction may be viewed as an interaction between two 
particles mediated by a third particle

22



1.3 Some physical examples

Physical examples
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1.2 Some physical examples

The helium triatomic molecules 4He3

Kunitski, Science 348, 551 (2015)
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1.2 Some physical examples

The helium triatomic molecules 4He3
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1.2 Some physical examples

The triton (2 neutrons + 1 proton)

Zero-range theory
Finite-range theory
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1.2 Some physical examples

Observations in ultra-cold atomic gases

27

Ultra-cold atoms are gases of atoms cooled to 
extremely low temperatures (< 𝜇K) to reach the 
quantum degeneracy regime.

Magic tool:  Feshbach resonances
By applying a magnetic field, it is possible to change 
the strength of interatomic interactions!



1.2 Some physical examples

Observations in ultra-cold atomic gases
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(2014)

Observation with bosonic 
cesium atoms
(Rudolf Grimm, Innsbruck)

Efimov trimers
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≈ 𝜆0 = 22.7 …
Universal scaling 

factor



1.2 Some physical examples

Vitaly Efimov and Rudolf Grimm receive the 
first Faddeev medal in Caen (July 11, 2018)
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1.2 Some physical examples

Vitaly Efimov’s speech after receiving the prize
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1.2 Some physical examples

Observations in ultra-cold atomic gases

Magnetic field (gauss)
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Efimov trimer

Efimov trimer

Efimov trimer

Science, 330, 940, Lompe et al (2010)

Observation with three distinguishable states of lithium atoms
(Heidelberg, Tokyo)

1

2
3
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Mathematical description

1.3 The Efimov effect: a mathematical description 41



Three-body equation

3 identical bosons interacting through the two-body potential 𝑽(𝒓)

Hamiltonian: 𝐻 = −
ℏ2

2𝑚
Δ𝟏 + Δ𝟐 + Δ𝟑 + 𝑉 𝒓12 + 𝑉 𝒓23 + 𝑉(𝒓31)

Schrödinger equation:       ( 𝐻 − 𝐸)𝜓 𝒙1, 𝒙2, 𝒙3 = 0

𝒙1

𝒙2

𝒙3

With 𝒓𝑖𝑗 = 𝒙𝑖 − 𝒙𝑗

Bosonic symmetry: 
𝜓 𝒙1, 𝒙2, 𝒙3 = 𝜓(𝒙𝑖 , 𝒙𝑗, 𝒙𝑘)

1.3 The Efimov effect: a mathematical description 42



Conditions on the two-body interaction potentials 𝑉(𝑟)

−𝑔

𝑉(𝑟)

What is a short-range resonant interaction?

1.3 The Efimov effect: a mathematical description 43
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Conditions on the two-body interaction potentials 𝑉(𝑟)

𝑟

𝑉(𝑟)

What is a short-range resonant interaction?

Should feature enough 
attractive part to approach 
the appearance of a two-
body bound state.
- 𝑎 ≫ 𝑏

Should decay faster than 1/𝑟3 to qualify 
as “short-range” and admit:
- typical range 𝒃:     𝑉 𝑟 ≈ 0 for 𝑟 ≫ 𝑏
- scattering length 𝒂

1.3 The Efimov effect: a mathematical description 44
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Conditions on the two-body interaction potentials 𝑉(𝑟)

𝑟

𝑉(𝑟)

What is a short-range resonant interaction?

1.3 The Efimov effect: a mathematical description 45

𝑏 𝑎

𝑟𝜑 𝑟

Elimination of the centre of mass and s-wave:

−
𝑑2

𝑑𝑟2 + 𝑉 𝑟 [𝑟𝜑 𝑟 ] = 0

For  𝑟 ≫ 𝑏,       𝑟𝜑 𝑟 ∝ 𝑟 − 𝑎 

Two-body equation at zero energy:

−
1

2
Δ1 −

1

2
Δ2 + 𝑉 𝑟12 − 0 𝜑(𝒙1, 𝒙2) = 0



Conditions on the two-body interaction potentials 𝑉(𝑟)

𝑟

𝑉(𝑟)

What is a short-range resonant interaction?

1.3 The Efimov effect: a mathematical description 46

𝑏

Elimination of the centre of mass and s-wave:

−
𝑑

𝑑𝑟
+ 𝑉 𝑟 [𝑟𝜑 𝑟 ] = 0

For  𝑟 ≫ 𝑏,       𝑟𝜑 𝑟 ∝ 𝑟 − 𝑎 

𝑎

𝑟𝜑 𝑟

Two-body equation at zero energy:

−
1

2
Δ1 −

1

2
Δ2 + 𝑉 𝑟12 − 0 𝜑(𝒙1, 𝒙2) = 0



Characterisation of the Efimov effect

1.3 The Efimov effect: a mathematical description 47

1/𝑎

“trimers”
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“Efimov plot”

1

2

3

4

5

× 𝜆0
−2

× 𝜆0
−2

𝜆0
−2

- For 𝑎 → ∞, infinite sequence of discrete eigenvalues: 𝐸𝑛 𝑛→∞
𝐸0𝜆0

−2𝑛

- Discrete scale invariance: for large 𝑛, if 𝜓𝑛(𝑟) is an eigenvector of 𝐻(𝑎) with 
eigenvalue 𝐸𝑛, then 𝜓𝑛(𝑟/𝜆0) is (almost) an eigenvector of 𝐻(𝑎 𝜆0) with 
eigenvalue 𝐸𝑛 𝜆0

−2

𝑎 → ∞

1

𝑎
, 𝐸𝑛

1

𝜆0𝑎
, 𝐸𝑛𝜆0

−2



How did Efimov “demonstrate” the effect?

1.3 The Efimov effect: a mathematical description 48

Vitaly Efimov in 1977

V. Efimov, “Weakly-bound states of 
three resonantly-interacting 
particles,” Yad. Fiz., 12, 1080–1091, 
November 1970, [Sov. J. Nucl. Phys. 
12, 589-595 (1971)].

V. Efimov, “Energy levels arising 
from resonant two-body forces in a 
three-body system.” Physics Letters 
B, 33, 563 – 564, 1970.



How did Efimov “demonstrate” the effect?

1.3 The Efimov effect: a mathematical description 49

can be replaced by𝑟

−𝑔

𝑉(𝑟)

Original interaction

𝑟

Parametrised 
only by 𝑎

𝑉(𝑟)

“Zero-range” interactionThe wave function is much larger 
than the range of interactions

(1) Zero-range approximation:

There are many ways to implement this:

- “Delta function” 𝑉 𝑟 → 𝑔𝛿3(𝒓) regularised by a cutoff (like renormalisation 
in quantum field theory)

- Zero-range boundary condition: 𝜓
𝑟→ 0

∝
1

𝑟
−

1

𝑎
    ⟺

𝑑

𝑑𝑟
ln 𝑟𝜓

ℓ=0 𝑟→ 0
−

1

𝑎

- Pseudo-potential 𝑉 𝑟 = 𝑔𝛿3 𝒓
𝑑

𝑑𝑟
(𝑟 ⋅)

Universality and scale 
invariance become exact!

𝑏 𝑏 = 0



How did Efimov “demonstrate” the effect?
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(2) Hyper-spherical adiabatic expansion  (crucial insight!)

However, the 3-boson problem with such zero-range interaction is not well posed: 
divergence of energies with large cutoff (“Thomas collapse”)

𝒙𝑖

𝒙𝑗

𝒙𝑘

𝒓𝑖𝑗

3

2
𝝆𝑖𝑗,𝑘

𝜓 𝒓𝑖𝑗 , 𝝆𝑖𝑗,𝑘 = 𝜓(𝜌, 𝛼, Ƹ𝑟𝑖𝑗 , ො𝜌𝑖𝑗,𝑘 )

Hyper-radius  𝜌 = 𝑟𝑖𝑗
2 + 𝜌𝑖𝑗,𝑘

2

Hyper-angle  𝛼 = arctan
𝑟𝑖𝑗

𝜌𝑖𝑗,𝑘

Change to hyper-spherical coordinates
Ω

𝜌−
5
2 −

𝑑2

𝑑𝜌2 −
1/4

𝜌2 −
ΛΩ

𝜌2 + 

𝑖𝑗

𝑉 𝜌 sin 𝛼𝑖𝑗 − 𝐸 𝜌5/2𝜓 = 0



How did Efimov “demonstrate” the effect?
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Expansion:   𝜓 𝜌, Ω =
1

𝜌5/2
σ𝑛=1

∞  𝑓𝑛 𝜌  Φ𝑛(Ω; 𝜌)

ΛΩ − 𝜌2 

𝑖𝑗

𝑉 𝜌 sin 𝛼𝑖𝑗 + 𝑠𝑛
2(𝜌) Φ𝑛 Ω; 𝜌 = 0

Hyper-radial Hyper-angular

Hyper-angular 
equation at fixed 𝜌:

Coupled hyper-
radial equations:

−
𝑑2

𝑑𝜌2
+

𝑠𝑛
2(𝜌) − 1/4

𝜌2
− 𝐸 𝑓𝑛

𝜌−
5
2 −

𝑑2

𝑑𝜌2 −
1/4

𝜌2 −
ΛΩ

𝜌2 + 

𝑖𝑗

𝑉 𝜌 sin 𝛼𝑖𝑗 − 𝐸 𝜌5/2𝜓 = 0

For zero-range interactions and 𝑎 → ∞, the equations decouple!

− 

𝑝

∞

2𝑃𝑛𝑝

𝑑𝑓𝑝

𝑑𝜌
+ 𝑄𝑛𝑝𝑓𝑝 = 0



How did Efimov “demonstrate” the effect?

1.3 The Efimov effect: a mathematical description 52

ΛΩ − 𝜌2 

𝑖𝑗

𝑉 𝜌 sin 𝛼𝑖𝑗 + 𝑠𝑛
2(𝜌) Φ𝑛 Ω; 𝜌 = 0

−
𝑑2

𝑑𝜌2 +
𝑠𝑛

2(𝜌) − 1/4

𝜌2 − 𝐸 𝑓𝑛 = 0

⟹  𝑠𝑛 cos
𝑠𝑛𝜋

2
+

8

3
sin(

𝑠𝑛𝜋

6
) = 0 

All 𝑠𝑛 are real, except one:  
𝑠0 = ±𝑖1.00624

For 𝑛 = 0, one gets the Efimov attractive potential  𝑉0 𝜌 = −
𝑠0

2+
1

4

𝜌2

For small 𝜌,  𝑓0 𝜌 = 𝛼𝜌𝑖|𝑠0| + 𝛽𝜌−𝑖|𝑠0| ∝ cos( 𝑠0 ln Λ𝜌) 

Three-body parameter

𝐸𝑛 = 𝐸0 exp 𝜋/|𝑠0| −2𝑛

𝜆0 ≈ 22.7  (scaling factor)
Fixed by Λ

𝐸1

𝐸0

𝐸2

𝐸3

…

𝑉0(𝑅)

set by a short-range 3-body 
boundary condition



3 Bosons 3 Distin-

guishable
3 Fermions

2 Bosons + 

1 particle

2 Fermions 

+ 1 particle

Efimov

effect

Yes Yes

No

For mass ratio > 13.607

e
/s

0
22.7 1986.1

22.7

1986.1

No

for equal masses

for unequal 

masses

e
/s

0

Number of resonant pairs

Yes

Scaling factor

Scaling factor

531.3 The Efimov effect: a mathematical description



2. More than three particles 58

More than three particles



2. More than three particles

Tetramers of four identical bosons

No four-body Efimov effect

Two “universal tetramers” 
attached to each Efimov 
trimer

Controversy:
1) There is in general a 

need for a 4-body 
parameter

2) The universal states 
do not require any 
4-body parameter

59

J. von Stecher, J. P. D’Incao, and C. H. Greene, Nature Physics, 5, 417–421, 2009.
A. Deltuva, Europhysics Letters, 95, 43002, 2011.



Inverse 
scattering 
length 1/𝑎

For 
𝑀

𝑚
> 13.6

𝐿 = 1
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Efimov 
trimers

∝
1

𝑎2

M

m

2. More than three particles

Tetramers of 3+1 fermions
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Inverse 
scattering 
length 1/𝑎

𝐿 = 1
Kartavtsev-Malykh
Universal trimers
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1

𝑎2

M

m

2. More than three particles

Tetramers of 3+1 fermions

For 8.17 <
𝑀

𝑚
< 13.6

Kartavtsev+Malykh
J Phys B 40, 1429 (2007)
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Inverse 
scattering 
length 1/𝑎

For 8.86 <
𝑀

𝑚
< 13.384

𝐿 = 1
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Universal tetramers

B. Bazak and D. S. Petrov, 
Phys. Rev. Lett., 118, 083002 (2017)

∝
1

𝑎2

M

m

2. More than three particles

Tetramers of 3+1 fermions

Kartavtsev-Malykh
Universal trimers

Kartavtsev+Malykh
J Phys B 40, 1429 (2007)

For 8.17 <
𝑀

𝑚
< 13.6
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Inverse 
scattering 
length 1/𝑎

𝐿 = 1

En
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gy

Castin, Mora, Pricoupenko, Phys. 
Rev. Lett., 105, 223201 (2010).

∝
1

𝑎2

M

m

“4-body Efimov effect!”

2. More than three particles

Tetramers of 3+1 fermions

For 8.17 <
𝑀

𝑚
< 13.6

For 13.384 <
𝑀

𝑚
< 13.6

Efimov tetramers

Kartavtsev-Malykh
Universal trimers

Kartavtsev+Malykh
J Phys B 40, 1429 (2007)
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Conclusion

Efimov physics has been a developing field of 
quantum physics, both theoretical and experimental, 
unveiling a whole collection of universal few-body 
states with remarkable mathematical properties and 
challenges.
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