A brief overview of Efimov physics and related mathematical problems

Pascal Naidon, RIKEN (Wako, Japan)

Plan

1. The Efimov effect for three particles

- 1. A physical description
- 2. Physical examples (experiments)
- 3. A mathematical description
- 2. More than three particles
 - 1. Universal tetramers (4 identical bosons)
 - 2. The four-body Efimov effect (3 fermions + 1)

Physical description

What is the Efimov effect?

Vitaly Efimov in 1977

V. Efimov, "Weakly-bound states of three resonantly-interacting particles," **Yad. Fiz., 12, 1080–1091**, November 1970, [**Sov. J. Nucl. Phys. 12, 589-595 (1971)**].

V. Efimov, "Energy levels arising from resonant two-body forces in a three-body system." **Physics Letters B, 33, 563 – 564, 1970**.

What is the Efimov effect?

The appearance of an effective **long-range three-body attractive force** between three particles interacting via **short-range two-body attractive forces**

Existence of **an infinite number of Borromean states**, i.e. three-body bound states in the absence of two-body bound state.

Borromeo family emblem

Existence of **an infinite number of Borromean states**, i.e. three-body bound states in the absence of two-body bound state.

Borromeo family emblem

Existence of an infinite number of Borromean states, i.e. three-body bound states in the absence of twobody bound state.

Borromeo family emblem

Existence of **an infinite number of Borromean states**, i.e. three-body bound states in the absence of two-body bound state.

Discrete scale invariance of the spectrum: each threebody state can be obtained from another by a scale transformation

Universality of the physical properties: they do not depend on the details of the two-body force, but **only on two parameters**.

Matryoshka (Russian nesting dolls)

• Is there an Efimov effect in classical physics?

Short-range attractive two-body interaction potential

• Is there an Efimov effect in classical physics?

• Is there an Efimov effect in classical physics?

• The quantum origin of the Efimov effect

Quantum fluctuations + interactions \implies critical strength g (zero-point) and quantisation

• The quantum origin of the Efimov effect

Quantum fluctuations + interactions \implies critical strength g (zero-point) and quantisation

• The quantum origin of the Efimov effect

Quantum fluctuations + interactions \implies critical strength g (zero-point) and quantisation

• The quantum origin of the Efimov effect

Critical strengths g for binding two particles \implies "unitarity"

• The quantum origin of the Efimov effect

Critical strengths g for binding two particles \implies "unitarity"

• The quantum origin of the Efimov effect

Critical strengths g for binding two particles \Rightarrow "unitarity"

• The quantum origin of the Efimov effect

Why universality and scale invariance?

• The quantum origin of the Efimov effect

Why infinitely many states?

At the three-body level:

Effective three-body potential $V(R) \propto -\frac{\hbar^2}{mR^2}$ Scales like the kinetic energy $K \propto \frac{\hbar^2}{mR^2} \frac{d^2}{dR^2}$

$ \rightarrow $	

- Scale invariant equation
- Long-range attractive potential, may support infinitely many states

• The quantum origin of the Efimov effect

Why long range ? in spite of short-range two-body interactions?

The Efimov attraction may be viewed as an interaction between two particles mediated by a third particle

Physical examples

The helium triatomic molecules ⁴He₃

The helium triatomic molecules ⁴He₃

Helium-4 trimer $(He_3)^*$

The triton (2 neutrons + 1 proton)

Observations in ultra-cold atomic gases

Ultra-cold atoms are gases of atoms cooled to extremely low temperatures (< μ K) to reach the quantum degeneracy regime.

Magic tool: Feshbach resonances By applying a magnetic field, it is possible to change the strength of interatomic interactions!

1.2 Some physical examples

Vitaly Efimov and Rudolf Grimm receive the first Faddeev medal in Caen (July 11, 2018)

Vitaly Efimov's speech after receiving the prize

Observations in ultra-cold atomic gases

Mathematical description

Three-body equation

3 identical bosons interacting through the two-body potential V(r)

Bosonic symmetry: $\psi(x_1, x_2, x_3) = \psi(x_i, x_j, x_k)$

Schrödinger equation: $(\widehat{H} - E)\psi(x_1, x_2, x_3) = 0$

Hamiltonian:
$$\widehat{H} = -\frac{\hbar^2}{2m}(\Delta_1 + \Delta_2 + \Delta_3) + V(r_{12}) + V(r_{23}) + V(r_{31})$$

With $r_{ij} = x_i - x_j$

What is a short-range resonant interaction?

What is a short-range resonant interaction?

Should decay faster than $1/r^3$ to qualify as "**short-range**" and admit:

- **typical range** \boldsymbol{b} : $V(r) \approx 0$ for $r \gg b$
- scattering length a

Should feature enough **attractive** part to approach the appearance of a twobody bound state. $-|a| \gg b$

What is a short-range resonant interaction?

Characterisation of the Efimov effect

- For $a \to \infty$, infinite sequence of discrete eigenvalues: $E_n \xrightarrow[n \to \infty]{} E_0 \lambda_0^{-2n}$
- **Discrete scale invariance**: for large n, if $\psi_n(r)$ is an eigenvector of $\hat{H}(a)$ with eigenvalue E_n , then $\psi_n(r/\lambda_0)$ is (almost) an eigenvector of $\hat{H}(a \lambda_0)$ with eigenvalue $E_n \lambda_0^{-2}$

Vitaly Efimov in 1977

V. Efimov, "Weakly-bound states of three resonantly-interacting particles," **Yad. Fiz., 12, 1080–1091**, November 1970, [**Sov. J. Nucl. Phys. 12, 589-595 (1971)**].

V. Efimov, "Energy levels arising from resonant two-body forces in a three-body system." **Physics Letters B, 33, 563 – 564, 1970**.

(1) Zero-range approximation:

There are many ways to implement this:

- "Delta function" $V(r) \rightarrow g\delta^3(r)$ regularised by a cutoff (like renormalisation in quantum field theory)
- Zero-range boundary condition: $\psi \xrightarrow[r \to 0]{} \propto \frac{1}{r} \frac{1}{a} \iff \left[\frac{d}{dr}\ln(r\psi)\right]_{\ell=0} \xrightarrow[r \to 0]{} \frac{1}{a}$

- Pseudo-potential
$$V(r) = g\delta^3(r)\frac{d}{dr}(r \cdot)$$

However, the 3-boson problem with such zero-range interaction is not well posed: divergence of energies with large cutoff ("Thomas collapse")

(2) Hyper-spherical adiabatic expansion (crucial insight!)

$$\rho^{-\frac{5}{2}} \left(-\frac{d^2}{d\rho^2} - \frac{1/4}{\rho^2} - \frac{\widehat{\Lambda}_{\Omega}}{\rho^2} + \sum_{ij} V(\rho \sin \alpha_{ij}) - E \right) (\rho^{5/2} \psi) = 0$$

Expansion: $\psi(\rho, \Omega) = \frac{1}{\rho^{5/2}} \sum_{n=1}^{\infty} f_n(\rho) \Phi_n(\Omega; \rho)$

Hyper-angular
equation at fixed
$$\rho$$
: $\left(\widehat{\Lambda}_{\Omega} - \rho^2 \sum_{ij} V(\rho \sin \alpha_{ij}) + s_n^2(\rho)\right) \Phi_n(\Omega; \rho) = 0$

Coupled hyper-
radial equations:
$$\left(-\frac{d^2}{d\rho^2} + \frac{s_n^2(\rho) - 1/4}{\rho^2} - E\right) f_n - \sum_p^{\infty} \left(2P_{np}\frac{df_p}{d\rho} + Q_{np}f_p\right) = 0$$

For zero-range interactions and $a \rightarrow \infty$, the equations decouple!

1.3 The Efimov effect: a mathematical description

More than three particles

Tetramers of four identical bosons

No four-body Efimov effect

Two "universal tetramers" attached to each Efimov trimer

Controversy:

- There is in general a need for a 4-body parameter
- The universal states do not require any 4-body parameter

J. von Stecher, J. P. D'Incao, and C. H. Greene, Nature Physics, 5, 417–421, 2009. A. Deltuva, Europhysics Letters, 95, 43002, 2011.

Conclusion

Efimov physics has been a developing field of quantum physics, both theoretical and experimental, unveiling a whole collection of universal few-body states with remarkable mathematical properties and challenges.