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A Review of Bogoliubov Theory



Fock Space and Canonical Operators

State of N bosonic/fermionic particles on the torus T3 is described by a vector

ψ ∈ P±L2(T3)⊗N with ψ(xπ(1), xπ(2), . . . , xπ(N)) = (±1)πψ(x1, x2, . . . , xN)

Fock space:
F± :=

∞⊕
n=0

P± L2(T3)⊗n

ψ = (ψ(0), ψ(1), ψ(2), ψ(3), . . .) , ψ(n) ∈ P±L2(T3)⊗n

Creation and Annihilation Operators: for f in one-particle space L2(T3) define

(a∗(f )ψ)(n+1) :=
√

n + 1P±(f ⊗ ψ(n)) , (a(f )ψ)(n−1) :=
√

n⟨f , ψ(n)⟩L2(T3,dx1)

Zero particles state: vacuum vector Ω = (1, 0, 0, . . .) ∈ F

a(f )Ω = 0 for all f ∈ L2(T3)

For an ONB (fk)k of the one-particle space L2(T3) we write ak := a(fk).
Main example: plane waves fk(x) = (2π)−3/2e ik·x with momenta k ∈ Z3.
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Commutators and Anticommutators

Canonical Commutation Relations: on bosonic Fock space F+

[a(f ), a(g)] := a(f )a(g) − a(g)a(f ) = 0 = [a∗(f ), a∗(g)] ,
[a(f ), a∗(g)] = ⟨f , g⟩ .

Canonical Anticommutation Relations: on fermionic Fock space F−

{a(f ), a(g)} := a(f )a(g) + a(g)a(f ) = 0 = {a∗(f ), a∗(g)} ,
{a(f ), a∗(g)} = ⟨f , g⟩ .

Bogoliubov maps: linear maps from the algebra (fermionic/bosonic)
of canonical operators to itself such that the CCR/CAR are preserved

Application: quadratic Hamiltonians

H =
∑
j,k

Djka∗
j ak + 1

2
∑
j,k

(Wjka∗
j a∗

k + Wjkakaj)

19.11.1932 Germany’s
top industry leaders urge
the president to appoint
Hitler as chancellor

30.1.1933: NSDAP seizes
control, governs by presi-
dential emergency decrees

7.4.1933: “Law for the
Restoration of the Pro-
fessional Civil Service”:
Born, Courant, Noether
etc. dismissed from their
positions
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Diagonalization of Quadratic Hamiltonians

Parametrization I: Bogoliubov maps can be written as

ã∗
j =

∑
k

Uj,ka∗
k +

∑
k

Vj,kak , U∗U ∓ V ∗V = 1 , V ∗U ∓ U∗V = 0 .

Diagonalization: For reasonable matrices D and W , there exists a Bogoliubov map such that

H =
∑

j
Ej,j ã∗

j ãj︸ ︷︷ ︸
excitation spectrum

+ 1
2 tr(E − D − W )︸ ︷︷ ︸

ground state energy

, σ(ã∗
j ãj) = N .

Parametrization II: there exists Kj,k (“Bogoliubov kernel”) such that

U = cosh(K ) , V = sinh(k) (bosonic case) / U = cos(k) , V = sin(k) (fermionic case).

Implementation on Fock space: If tr V ∗V < ∞ we can define a unitary R : F± → F± by

R := exp
(∑

j,k
Kj,ka∗

j a∗
k − h.c.

)
,

which “implements” the Bogoliubov map: R∗ajR = ãj , R∗a∗
j R = ã∗

j .
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From Fermions to Bosons



Transforming Fermions into Bosons (quasi. . . )

Pairs of fermions as bosons? Fermionic a∗
j anticommute, pairs of fermions commute:

Let b∗
j,k := a∗

j a∗
k , then [b∗

j,k , b∗
m,n] = 0 .

The bad news. . . Pauli principle
(
a∗

j
)2 = 0 is difficult to escape:(

b∗
j,k
)2 = a∗

j a∗
ka∗

j a∗
k = −

(
a∗

j
)2 (a∗

k )2 = 0 . We cannot create more than one pair!

Solution by collective modes: pick a large index set of pairs Iµ, and define

b∗
µ := |Iµ|−1/2

∑
(j,k)∈Iµ

a∗
j a∗

k .

then only a small fraction of terms (the diagonal “j = j̃”) vanishes due to the Pauli principle in

(b∗
µ)2 = |Iµ|−1

∑
(j,k)∈Iµ

∑
(̃j,k̃)∈Iµ

a∗
j a∗

k a∗
j̃ a∗

k̃ .

Quasibosonic CCR: for well-chosen index sets

[b∗
µ, b∗

τ ] = 0 , [b∗
µ, b∗

τ ] = δµ,τ − Eµ,τ , with “deviation operator” Eµ,τ ∼
∑

j,k a∗
j ak

|Iµ|1/2|Iτ |1/2 .
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Application to the Fermi Gas



Fermionic Mean-Field Scaling

HN :=
N∑

i=1
(−∆xi ) + λ

∑
1≤i<j≤N

V (xi − xj) with V : R3 → R

Mean–field limit: N → ∞, weak interaction, mean particle distance ≪ interaction range

Simplest fermionic state: antisymmetric tensor product = Slater determinant

ψ = φ1 ∧ φ2 ∧ · · · ∧ φN ⇔ ψ(x1, . . . , xN) = 1√
N!

det (φi(xj))i,j

For non-interacting fermions: the ground state is a Slater determinant of plane waves.

Kinetic energy:
∑

k∈BF
|k|2 ∼ N5/3 Potential energy:

∑
i<j V (xi − xj) ∼ N2

⇒ Coupling constant: λ := N−1/3
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Time Scale

Fermi momentum: kF = supk∈BF
|k| ∼ N1/3 ⇒ typical velocity ∼ N1/3

Rescale time: consider typical times of order N−1/3

iN1/3∂tψt =

 N∑
j=1

−∆xj + N−1/3
∑

1≤i<j≤N
V (xi − xj)

ψt

Effective Planck constant: ℏ := N−1/3, multiply both sides by ×ℏ2

⇒ N fermions in mean-field/semiclassical scaling

iℏ∂tψt = HNψt , HN =
N∑

j=1
−ℏ2∆xj + 1

N
∑

1≤i<j≤N
V (xi − xj) , ℏ = N−1/3

Investigate: ground state energy EN := inf∥ψ∥=1⟨ψ,HNψ⟩, spectrum σ(HN), time evolution?
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Hartree–Fock Theory

Hartree–Fock Theory: optimize only the choice of orbitals φj (no linear combinations):

EHF
N :=

{
⟨ψ,HNψ⟩ : ψ = φ1 ∧ · · · ∧ φN with φj ∈ L2(T3) normalized

}
.

In general, plane waves are only a stationary point, not a (local or global) minimizer.

Theorem: [Gontier–Hainzl–Lewin ’19, Gontier–Lewin ’19]
With Coulomb interaction, spin, and in the thermodynamic limit:

E pw − C1e−ρ1/6
≤ EHF ≤ E pw − C2e−ρ1/6

, for density ρ → ∞ .

Theorem: [B–Nam–Porta–Schlein–Seiringer ’21]
On the finite torus, without spin, for 0 ≤ V̂ ∈ ℓ1(Z3), for N = |BF|, we have

EHF
N = E pw

N .
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Validity of Hartree–Fock Theory

Hartree–Fock trivially yields an upper bound:

EHF
N := inf

ψ Slater det.
∥ψ∥=1

⟨ψ,HNψ⟩ ≥ EN

Theorem: [Graf–Solovej ’94]
For N → ∞ we have

EN = EHF
N + o(N0) for N → ∞ .

The Hartree–Fock energy is given by the Thomas–Fermi (kinetic and direct) and the
Dirac (exchange) term:

EHF
N = cTFN + cHFN0 .

What is the next order?
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Beyond Hartree–Fock Theory:
Correlation Energy



Beyond Hartree–Fock

Theorem: [B–Nam–Porta–Schlein–Seiringer ’21]
Let V̂ be non–negative and

∑
k∈Z3 V̂ (k)|k| < ∞. Then

EN = cTFN + cHF + cRPAN−1/3 + o(N−1/3) as N → ∞ .

The leading order of the correlation energy is given by (with κ0 = (3/4π)1/3)

cRPA := κ0
∑
k∈Z3

|k|
(

1
π

∫ ∞

0
log
(

1 + 2πκ0V̂ (k)
(

1 − λ arctan
( 1
λ

)))
dλ− π

2 κ0V̂ (k)
)
.

Proof: Hamiltonian HN can be generalized to an operator F → F :

HN = ℏ2
∑
p∈Z3

|p|2a∗
pap + 1

2N
∑

k,p,q∈Z3

V̂ (k)a∗
p+ka∗

q−kaqap

Bosonization ; almost quadratic Hamiltonian ; approximate Bogoliubov diagonalization.
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History of the Correlation Energy

• Wigner ’34, Heisenberg ’47: perturbation theory with V̂ (k) = 1/|k|2 severely divergent
already at second order

• Macke ’50: partial resummation (log series) cures the divergence
• Bohm–Pines ’53: relation to collective oscillations (plasmon excitation)
• Sawada–Brueckner–Fukuda–Brout ’57: explanation through formal bosonization of

pair excitations
• Gell-Mann–Brueckner ’57: systematic partial resummation

• B–Nam–Porta–Schlein–Seiringer ’20: rigorous bosonization ⇒ optimal upper bound
for V̂ non-negative and compactly supported

• B–Nam–Porta–Schlein–Seiringer ’21: corresponding lower bound for small potential
• B–Porta–Schlein–Seiringer ’23, Christiansen–Hainzl–Nam ’23: general potentials
• Christiansen–Hainzl–Nam ’23–’24: extension to Coulomb potential
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Preparing the Proof: Excitations over the Hartree–Fock Minimizer

Hartree–Fock minimizer:

ψF :=
∧

k∈BF

fk =
∏

k∈BF

a∗
kΩ Slater determinant of plane waves

BF := {k ∈ Z3 : |k| ≤ κ0N1/3} momenta in the Fermi ball

Try to find a diagonalizable (i. e,. quadratic) Hamiltonian describing only the excitations over
Hartree–Fock theory.

Recall the starting point: fermionic Hamiltonian

HN = ℏ2
∑
p∈Z3

|p|2a∗
pap + 1

2N
∑

k,p,q∈Z3

V̂ (k)a∗
p+ka∗

q−kaqap
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Particle–Hole Transformation

Particle-hole transformation R : F → F unitarily acting by

R a∗
k R∗ :=

{
a∗

k for |k| > cN1/3

ak for |k| ≤ cN1/3 ,
RψF := Ω .

Expand RHNR∗ and normal-order:

RHNR∗ = EHF
N + ℏ2

∑
p∈Bc

F

p2a∗
pap − ℏ2

∑
h∈BF

h2a∗
hah︸ ︷︷ ︸

=: Hkin

+
∑
h∈BF

Q︸ ︷︷ ︸
interaction, quartic in

operators a∗ and a

Define collective pair–creation operators

b∗
k :=

∑
p∈Bc

F
h∈BF

δp−h,k a∗
p a∗

h
p “particle” outside the Fermi ball
h “hole” inside the Fermi ball
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Bosonization

Bosonizable terms of the interaction:

Q = 1
N
∑
k∈Z3

V̂ (k)
(

2b∗
k bk + b∗

k b∗
−k + b−kbk

)
+ non–bosonizable terms .

This is convenient because the b∗
k and bk have approximately bosonic (CCR) commutators:

b∗
k b∗
ℓ = b∗

ℓ b∗
k , [bℓ, b∗

k ] = bℓb∗
k − b∗

k bℓ = n2
k (δk,ℓ + Ek,ℓ) .

How to express Hkin ∼ a∗a as a quadratic form in pair operators?

Use a discrete partition of unity of the surface of the Fermi ball

b∗
k =

M∑
α=1

nα,kb∗
α,k + negligible .
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Patch Decomposition

Fermi ball BF

ωα

[Benfatto–Gallavotti ’90]
[Haldane ’94]

[Fröhlich et al. ’95]

Pair creation operators, localized to patches:

b∗
α,k := 1

nα,k

∑
p∈Bc

F∩Bα

h∈BF∩Bα

δp−h,ka∗
pa∗

h .

Linearize kinetic energy around patch center ωα:

[Hkin, b∗
α,k ] ≃ 2ℏ |k · ω̂α| b∗

α,k .

⇒ in commutators:

Hkin ≃
∑
k∈Z3

M∑
α=1

2ℏ |k · ω̂α| b∗
α,kbα,k .
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Controlling the Spectral Gap

Normalization:
To get explicitly boson-like commutators, choose nα,k
such that ∥b∗

α,kΩ∥ = 1.

n2
α,k =

∑
p∈Bc

F∩Bα

h∈BF∩Bα

δp−h,k ≃ 4πN2/3

M |k · ω̂α| .

Closing gap of kinetic energy balanced by excitation en-
ergies vanishing at the same rate.

kωα

Effective Quadratic Bosonic Hamiltonian

Heff = ℏ
∑
k∈Z3

[∑
α

u2
αb∗

α,kbα,k + V̂ (k)
M

∑
α,β

(
uαuβb∗

α,kbβ,k + uαuβb∗
α,kb∗

β,−k + h.c.
)]
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Bogoliubov Diagonalization

Can be diagonalized by a Bogoliubov transformation, i. e., a unitary T : F → F preserving
the canonical commutation relations of bosonic creation and annihilation operators.

T := exp
(∑

k∈Z3

M∑
α,β=1

K (k)α,βb∗
α,kb∗

β,−k − h.c.
)

Tbα,kT ∗ ≃
∑
β

cosh(K (k))α,βbβ,k +
∑
β

sinh(K (k))α,βb∗
β,−k

Optimize the matrix K (k) such that b∗b∗– and bb–terms vanish from T ∗HeffT :

THeffT ∗ ≃ ERPA
N + ℏ

∑
k∈Z3

M∑
α,β=1

E (k)α,βb∗
α,kbβ,k ≥ ERPA

N .

Non–bosonizable terms and deviation from bosonic CCR controlled through all the analysis. ■
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Phases of Matter and
Universality in Bosonization



Universality Classes

Universality Conjectures:

• Fermi liquid [Landau ’56]:
in d ≥ 2, in absence of superconductivity, almost non–interacting effective description

• Luttinger liquid [Haldane ’81]:
in d = 1, behavior similar to [Lieb–Mattis ’65]’s exact solution of the Luttinger model

Signatures: number of fermions with momentum k in the ground state
non–interacting/HF

1

|k|

Fermi liquid

1

|k|

Luttinger liquid

1

|k|

Renormalization Group Analysis: [Benfatto–Gallavotti–Mastropietro ’92] d = 1 is Luttinger
liquid; [Feldmann–Knörrer–Trubowitz ’00–’04] d = 2 for asymmetric Fermi surface (to
suppress Kohn–Luttinger superconductivity) is Fermi liquid. 17



Bosonization is sufficient to identify the Fermi liquid phase

Theorem: [B–Lill ’23] Let ψ := TΩ the trial state for the optimal upper bound. Then
for any ϵ > 0 and all momenta q ∈ Z3 such that ∄k ∈ BR(0) : |k·q|

|k||q| ∈ (0, ϵ) we have

0 ≤ ⟨ψ, a∗
kakψ⟩ ≤ N− 2

3
∑

k∈Cq∩Z3

V̂ (k)
2πκ0|k|

∫ ∞

0

(µ2 − λ2
q,k)(µ2 + λ2

q,k)−2

1 + Qk(µ) dµ+ E ,

where
λq,k := |k · q|

|k||q|
, Qk(µ) := 2πκ0V̂ (k)

(
1 − µ arctan

(
1
µ

))
and the error term is |E| ≤ Cϵ−1N− 2

3 − 1
12 .

Corollary: The momentum distribution of the trial state has a jump
of height Z ≥ 1−CN− 2

3 + 1
12 at the non-interacting Fermi momentum.

Graph: [Daniel–Vosko ’60]
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