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A Review of Bogoliubov Theory



Fock Space and Canonical Operators

State of N bosonic/fermionic particles on the torus T2 is described by a vector

w & ’D:I: L2(T3)®N with w(xﬂ'(l% Xn(2)y - - 7X7T(N)) = (Zl:].)ﬂ’(/J(Xl, X2y aXN)
Fock space: 29
Fi =@ Ps L2(T%)®"
n=0

= (w(0)7w(1)’ WIQRTICN ), p e Py L2(T3)®"
Creation and Annihilation Operators: for f in one-particle space L?(T%) define
(@ ()" =V rTP(f@v™),  (a(F)"Y = Valf, ¥ iam o)
Zero particles state: vacuum vector Q = (1,0,0,...) € F
a(f)Q =0 forall f € [*(T?)

For an ONB (fi)k of the one-particle space L2(T®) we write a5 := a(fx).
Main example: plane waves f(x) = (27)~3/2e’** with momenta k € Z3.



Commutators and Anticommutators

Canonical Commutation Relations: on bosonic Fock space F_.

AX BORN
1882 ~ 5.1.1870
q=-4P=zki

19.11.1932 Germany's
top industry leaders urge
the president to appoint
Hitler as chancellor

Canonical Anticommutation Relations: on fermionic Fock space F_

{a(f), a(g)} := a(f)a(g) + a(g)a(f) = 0 = {a"(f),a"(g)} ,

{ ( ) ( )} < > 30.1.1933: NSDAP seizes
control, governs by presi-
Bogoliubov maps: linear maps from the algebra (fermionic/bosonic) dential emergency decrees

of canonical operators to itself such that the CCR/CAR are preserved  7.4.1933: “Law for the

Restoration of the Pro-

fessional Civil Service":
1 Born, Courant, Noether

H = E Djkaj ak + 5 E (Vijaj ag + Vijakaj) etc. dismissed from their
o T positions

Application: quadratic Hamiltonians



Diagonalization of Quadratic Hamiltonians

Parametrization |: Bogoliubov maps can be written as

Zujkak+z kK U'UFV*V=1, VUFUV=0.

Diagonallzatlon: For reasonable matrices D and W, there exists a Bogoliubov map such that

ZE;& 1tr(E D-W), o(33)=N.

excitation spectrum ground state energy



Diagonalization of Quadratic Hamiltonians

Parametrization |: Bogoliubov maps can be written as

Zujkak+z kK U'UFV*V=1, VUFUV=0.

Diagonallzatlon: For reasonable matrices D and W, there exists a Bogoliubov map such that

1
ZI:'“”E' +5t(E-D-W),  o(3%)=N.

excitation spectrum ground state energy

Parametrization Il: there exists K x (“Bogoliubov kernel”) such that
U = cosh(K), V =sinh(k) (bosonic case) / U = cos(k), V =sin(k) (fermionic case).

Implementation on Fock space: If tr V*V < oo we can define a unitary R : Fr — F4 by
R := exp (Z K ka;ag — h.c.) ,
Jok

which “implements” the Bogoliubov map: R*a;R = 3; , R*aiR =3 .



From Fermions to Bosons
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Transforming Fermions into Bosons (quasi. ..

Pairs of fermions as bosons? Fermionic ajf anticommute, pairs of fermions commute:

Let b7, :=afa;, then [bf, by, ,]=0.

The bad news. .. Pauli principle (aj‘)2 = 0 is difficult to escape:

2 2 2 .
(bﬁk) =a‘agaia, = — (aj’-‘) (af)"=0. We cannot create more than one pair!

Solution by collective modes: pick a large index set of pairs /,, and define

* L —-1/2 * _k
by, = |1, Z(j,k)elu aja -

then only a small fraction of terms (the diagonal *j :]) vanishes due to the Pauli principle in

(b})? f|/urlz EIZ aja;ajzfa;.

Quasibosonic CCR: for well-chosen index sets

2k 3] 3

(b, b7] =0, [by;, b7] = d,r — Eur , with “deviation operator” £, , ~ 7“”'1/2'#‘1/2 .



Application to the Fermi Gas



Fermionic Mean-Field Scaling

N
Hy:=Y (-Ag)+XA Y V(i—x) with V:R® SR
i=1 1<i<j<N

Mean—field limit: N — oo, weak interaction, mean particle distance < interaction range
Simplest fermionic state: antisymmetric tensor product = Slater determinant
1
V=1 Ap2 A Non < w(xlw"'/XN):Wdet(‘p/(xj))i,j

For non-interacting fermions: the ground state is a Slater determinant of plane waves.

Kinetic energy: >, g [k|]> ~ N5/3 Potential energy: >, _; V(x;i — x;) ~ N?

= Coupling constant: A= N"13



Fermi momentum: kr = sup,cg_|k| ~ N'/3 = typical velocity ~ N'/3

Rescale time: consider typical times of order N—1/3

iNY30,0p, = Z —D + NN V(G — X)) | e

1<i<j<N
Effective Planck constant: /1 := N~1/3, multiply both sides by x#?

= N fermions in mean-field/semiclassical scaling

N
. 1 ~
Iﬁ@ﬂ/’t - HNdjt ) HN — g *thXj aF N E V(X,' — XJ) 5 h=N 1/3
Jj=1 1<i<j<N

Investigate: ground state energy Ey := inf,=1(¥, Hyy), spectrum o(Hy), time evolution?



Hartree—Fock Theory

Hartree—Fock Theory: optimize only the choice of orbitals ¢; (no linear combinations):

ENF = {0, Huy) : ¥ = o1 A -+ A oy with o; € L*(T?) normalized} .

In general, plane waves are only a stationary point, not a (local or global) minimizer.

Theorem: [Gontier—Hainzl-Lewin '19, Gontier—Lewin '19]
With Coulomb interaction, spin, and in the thermodynamic limit:

/6 /6

EPY — Cle_p1 < ERF < ppw _ Cge_p1 , for density p — o .

Theorem: [B—Nam—Porta—Schlein—Seiringer '21]
On the finite torus, without spin, for 0 < V e ¢1(Z3), for N = |Bg|, we have

HF _ pw
ENF = EBY.




Validity of Hartree—Fock Theory

Hartree—Fock trivially yields an upper bound:

ERF .= inf H > E
N " Sla!?er det.<’(/)7 /\ﬂ/)> =N
llvll=1

Theorem: [Graf-Solovej '94]

For N — oo we have
En = ENF +0o(N°)  for N — oo

The Hartree—Fock energy is given by the Thomas—Fermi (kinetic and direct) and the
Dirac (exchange) term:

E,UF =ctelN + CHFN0 .

What is the next order?



Beyond Hartree—Fock Theory:
Correlation Energy



Beyond Hartree—Fock

~

Theorem: [B-Nam—Porta—Schlein—Seiringer '21]
Let V/ be non—negative and Y kezs V(k)|k| < oo. Then

En = CTFN+CHF+CRPAN71/3+O(N71/3) as N — oo .

The leading order of the correlation energy is given by (with ko = (3/4m)Y/3)

CRPA ‘= Ko Z |k| <71r /000 log <1 + 2#/@0\7(/()(1 — Aarctan (i))) d\ — gno\A/(k)) .

kez3

Proof: Hamiltonian Hy can be generalized to an operator F — F:

* 1 , * *
Hy = B2 Z lpl*a%a, + N Z V(k)ay,kag—_k3qap

pEZ? k,p,qeZ?

Bosonization ~ almost quadratic Hamiltonian ~ approximate Bogoliubov diagonalization.



History of the Correlation Energy

= Wigner '34, Heisenberg "47: perturbation theory with V/(k) = 1/|k|? severely divergent
already at second order

= Macke '50: partial resummation (log series) cures the divergence
= Bohm-Pines ’53: relation to collective oscillations (plasmon excitation)

= Sawada—Brueckner—Fukuda—Brout '57: explanation through formal bosonization of
pair excitations

= Gell-Mann—Brueckner '57: systematic partial resummation

= B—Nam-Porta—Schlein—Seiringer "20: rigorous bosonization = optimal upper bound
for V non-negative and compactly supported

= B-—Nam-Porta—Schlein—Seiringer '21: corresponding lower bound for small potential
= B—Porta—Schlein—Seiringer 23, Christiansen—Hainzl-Nam ’23: general potentials

= Christiansen—Hainzl-Nam ’23-'24: extension to Coulomb potential

10



Preparing the Proof: Excitations over the Hartree—Fock Minimizer

Hartree—Fock minimizer:

YF = /\ fx = H aQ Slater determinant of plane waves
keBF ke Br
B :={k e VAR |k| < n0N1/3} momenta in the Fermi ball

Try to find a diagonalizable (i.e,. quadratic) Hamiltonian describing only the excitations over
Hartree—Fock theory.

Recall the starting point: fermionic Hamiltonian

1 A
Hy = h? Z |p|2a;ap + N Z V(k)apkag—k3qap
peZ? k,p,q€Z?

11



Particle—Hole Transformation

Particle-hole transformation R : F — F unitarily acting by

a;  for |k| > cN/3
Ra; R* := K Ryg :=Q.
s { ak for |k| < cN/3 | ¥r

Expand RHyR* and normal-order:

RHyR® = ENF + 12 Y p?ata, —h? Y hWaja, + Q
pEBE he Bk
N——
—o Hkin interaction, quartic in

operators a* and a

12



Particle—Hole Transformation

Particle-hole transformation R : F — F unitarily acting by

at  for |k| > cNY/3
Ra; R* := K Ryg :=Q.
% { ak for |k| < cN/3 | ¥r

Expand RHyR* and normal-order:

RHyR® = ENF + 12 Y p?ata, —h? Y hWaja, + Q
pEBE heBk
N——
Hkin interaction, quartic in

operators a* and a

Define collective pair—creation operators

b 5 gt ot p ‘“particle” outside the Fermi ball
k p—h,k €p “ woe . .
A h  “hole” inside the Fermi ball
pEBE
heBg

12



Bosonization

Bosonizable terms of the interaction:

1 N
Q= = Z V (k) (2b;bk + bbb, + b_kbk> + non—bosonizable terms.
kez?

This is convenient because the by and by have approximately bosonic (CCR) commutators:

bib; = by by, [be, bi] = bebj — bigby = nf (Ske + Exye) -

How to express H" ~ a*a as a quadratic form in pair operators?

Use a discrete partition of unity of the surface of the Fermi ball

M
by =) nakb} i + negligible .

a=1

13



Patch Decomposition

Fermi ball B¢ Pair creation operators, localized to patches:
1
Z,k = ni E 5,,_h,ka;az o
@k peBEnB,
heBeNB,

[Benfatto—Gallavotti '90]
[Haldane '94]

[Frohlich et al. '95]

14



Patch Decomposition

Fermi ball Bg

Pair creation operators, localized to patches:

1
* e * %k
ok T T E 5,,_h,kapah o

n
ok beBinB,
hEBFmBa

Linearize kinetic energy around patch center w:

[H ", b% () ~ 2R |k - @a| bY . -

= in commutators:
[Benfatto—Gallavotti '90]

M
[Haldane '94] Ki
H" ~ 2h |k - Qo B 1 bo K -
[Fréhlich et al. '95] D D 2hlk-Gal B bk
kezZ? a=1

14



Controlling the Spectral Gap

Normalization:

To get explicitly boson-like commutators, choose n,

such that [|b} Q2 = 1.

5 A N2/3 R
na’k: E 5p,h7k27M |k~wa\ o
PEBENB,
heBrNB,

Closing gap of kinetic energy balanced by excitation
ergies vanishing at the same rate.

en-

4

N

15



Controlling the Spectral Gap
: k

Normalization:
To get explicitly boson-like commutators, choose n,
/
!

such that [|b} Q2 = 1.
4 N2/3
T k- G - :

2 E ~

na,k - 5P*h~,k - M
/

/ i

4 1

4

PEBENB,
heBrNB,
!
!
7

Closing gap of kinetic energy balanced by excitation en-

ergies vanishing at the same rate.

Effective Quadratic Bosonic Hamiltonian
k
) Z (UQUQb:;’kbg’k + uquph}, (bj _y + h.c.)]
a,B

A

HM =h> " 1Y u2b% o+ (7

kez? o

15



Bogoliubov Diagonalization

Can be diagonalized by a Bogoliubov transformation, i.e., a unitary T : F — F preserving
the canonical commutation relations of bosonic creation and annihilation operators.

T —exp<z > K(K)asb, kb;_k—h.c.)

keZ? a,B=1
ThakT* =Y cosh(K(k))a,sbs i+ Y sinh(K(k))a,abj _«
B B
Optimize the matrix K (k) such that b*b*~ and bb—terms vanish from T*H"T:

M
THeT T+ ~ ERPA 4 Z > E(K)apbiibse > ERN.
€Z3 a,f=1

Non—bosonizable terms and deviation from bosonic CCR controlled through all the analysis. W

16



Phases of Matter and
Universality in Bosonization



Universality Classes

Universality Conjectures:
= Fermi liquid [Landau '56]:
in d > 2, in absence of superconductivity, almost non—interacting effective description

= Luttinger liquid [Haldane '81]:
in d = 1, behavior similar to [Lieb—Mattis '65]'s exact solution of the Luttinger model

Signatures: number of fermions with momentum k in the ground state

non—interacting/HF Fermi liquid Luttinger liquid

k| T k|

Renormalization Group Analysis: [Benfatto—Gallavotti-Mastropietro '92] d = 1 is Luttinger
liquid; [Feldmann—Knorrer—Trubowitz '00-'04] d = 2 for asymmetric Fermi surface (to

I/ 1

)

|k

suppress Kohn—Luttinger superconductivity) is Fermi liquid. 17



Bosonization is sufficient to identify the Fermi liquid phase

Theorem: [B-Lill 23] Let ¢ := T the trial state for the optimal upper bound. Then

for any € > 0 and all momenta q € Z3 such that #ik € Bg(0) : \‘:th\ € (0,¢) we have
2 (12 = N5 ) + 2% )2
0§<w,a*akw>§N‘g / 9 CILE Y
k kecqﬂZ3 27r/€o|k| 1+ Qu(p)
where

i 0 (1w ()
Ag k= —— , Q =2mroV(k) | 1 — parctan | —
q,k Iklq] k(M) 0 ( ) P

and the error term is |€] < Ce IN~5- 5.

18



Bosonization is sufficient to identify the Fermi liquid phase

Theorem: [B-Lill 23] Let ¢ := T the trial state for the optimal upper bound. Then

for any € > 0 and all momenta q € Z3 such that #ik € Bg(0) : “:H‘y‘ € (0,¢) we have

2 (12 = N5 ) + 2% )2
0< (¢, afary) < N3 / 9 CILE Y
k kecqﬂZ3 27r/{o|k| 1+ Qu(p)

where

i 10 (1w ()
Ag k= —— , Q =2mroV(k) | 1 — parctan | —
q,k Iklq] k(M) 0 ( ) P

and the error term is |€] < Ce IN~5- 5. o

a=0)

Corollary: The momentum distribution of the trial state has a jump
of height Z > 1— CN=3F% at the non-interacting Fermi momentum. Z

18

Graph: [Daniel-Vosko '60] [~
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