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The Anderson Model
P. W. Anderson 1958 :
“Absence of diffusion in certain random lattices”, Phys. Rev. (Nobel 1977)

Consider many possible realizations of the potential ω,
where ω is in a probability space (Ω,P).

We obtain a random operator Ω ∋ ω 7→ Hω =−∆+Vω, where

Vωϕ(x) = ωx ϕ(x),

is a random potential generated by ω = (ωx)x∈Zd bounded, iid random
variables.
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Propagation of quantum waves in disordered media{
i∂t ψ(x , t) = Hωψ(x , t), ψ(·, t) ∈ ℓ2(Zd),

ψ(x ,0) = ψ0,

Therefore
ψ(t,x) = e−itHω ψ0

We say that Hω exhibits dynamical localization (DL) in I if there exist
constants C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(
sup
t∈R

|⟨δy ,e
−itHωχI(Hω)δx⟩|

)
≤ Ce−c|x−y |

In particular, for any ϕ ∈ ℓ2(Zd) with compact support we have

sup
t

∥∥|X |pe−itHωχI(Hω)ψ
∥∥< ∞

for every p ≥ 0, with probability one.
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R.A.G.E.
H = Hc ⊕Hpp, the Lebesgue decomposition of a Hilbert space according to
continuous spectrum and pure point spectrum.

Theorem (Ruelle ’69, Amrein-Georgescu ’73/74, Enss’78)
Let H be a s.a. operator on ℓ2(Zd), let Pc and Ppp be the orthogonal
projections onto Hc and Hpp, resp. Let ΛL be a cube of side L around the
origin. Then, for any ϕ ∈ ℓ2(Zd),

∥Pcϕ∥2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
ϕ(x)|2

)
dt

∥Pppϕ∥2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x∈ΛL

|e−itH
ϕ(x)|2

)
dt

Theorem
If (DL) in I then PcχI(H) = 0, so pp spectrum in I.

If sup
t

∥∥|X |e−itHωχI(Hω)ψ
∥∥< ∞ a.s., then pp spectrum in I.
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The expected metal-insulator transition

Conjecture and what is known for Hω =−∆+Vω

▶ In d = 1 Hω exhibits localization everywhere in the spectrum. ✓

▶ In d = 2, localization as in d = 1. (Localization at spectral band edges)

▶ In d ≥ 3 there is a transition between localized and delocalized states.
(Localization at spectral band edges)

▶ Strong disorder regime : If d ≥ 1 and ∥Vω∥∞
large enough, localization

everywhere in the spectrum.

Proofs for d ≥ 1 rely on two alternative methods :

• the Multiscale Analysis (Fröhlich-Spencer’83).

• the Fractional Moment Method (Aizenman-Molchanov’93)
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The Multiscale Analysis - The Machine ! !

ΛL(x) := [− L
2 ,

L
2 ]

d + x ⊂ Zd , with boundary ∂ΛL. Write HΛ = χΛLHωχΛL

ΛL(x)⊂ Zd is (E,m)-good if E /∈ σ(Hω) and∣∣⟨δy ,(HΛ−E)−1
δx⟩
∣∣≤ e−mL/2, ∀y ∈ ∂ΛL

The box ΛL(x) is non resonant if
∥∥(HΛ−E)−1

∥∥≤ Lθ for some θ > 0.

5 / 19



The Multiscale Analysis - The Machine ! !

ΛL(x) := [− L
2 ,

L
2 ]

d + x ⊂ Zd , with boundary ∂ΛL. Write HΛ = χΛLHωχΛL

ΛL(x)⊂ Zd is (E,m)-good if E /∈ σ(Hω) and∣∣⟨δy ,(HΛ−E)−1
δx⟩
∣∣≤ e−mL/2, ∀y ∈ ∂ΛL

The box ΛL(x) is non resonant if
∥∥(HΛ−E)−1

∥∥≤ Lθ for some θ > 0.

5 / 19



The Multiscale Analysis - The Machine ! !
ΛL(x)⊂ Zd is (E,m)-good if E /∈ σ(Hω) and∣∣⟨δy ,(HΛ−E)−1

δx⟩
∣∣≤ e−mL/2, ∀y ∈ ∂ΛL

Theorem (Fröhlich-Spencer’83, von Dreifus-Klein’89)
Suppose that for E0 in the a.s. spectrum, there is L0 and m0(L0) such that

P(ΛL0(0) is (E ,m0)−good)≥ 1− 1

Lp
0
,

then, for Lk+1 = [Lα
k ], k = 0,1,2, ... with α ∈ (1,2) and p′ < p

P(ΛLk (0) is (E0,
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2
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Moreover, there exists δ > 0 such that for I = (E0 −δ,E0 +δ), for all k,
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for all x ,y with ∥x − y∥> Lk .Then... dynamical localization in I.
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Sketch of proof

The box ΛL0 is good (initial estimate)
Iteration step Lk ⇒ Lk+1.
Assume ΛLk+1 non resonant.
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Sketch of proof
If all boxes ΛLk are good, then ΛLk+1 is good.
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Sketch of proof
Bad things can happen → existence of bad regions
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Sketch of proof
Bad things will happen !
Assume the bad region can be covered by a non-resonant box and move
along !
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Sketch of proof

Deterministic part

If

(A) All except some boxes of
size Lk are good

(B) The bad boxes can be
covered by a box of size
slightly larger than Lk that
is non-resonant.

(C) The box of size Lk+1 is
non-resonant.

Then, (D) the box ΛLk+1 is
good.

Probabilistic part

A∩B∩C ⊂ D,

so

P(Dc)≤ P(Ac)+P(Bc)+P(Cc)

P(Ac) is given by the hypothesis and
independence of the random variables.

P(Bc),P(Cc) bounded using the

Wegner estimate : for η > 0,L ∈ N

P(dist(σ(Hω,L),E)≥ η)≤ CE ηLd
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The Multiscale Analysis

Theorem
Suppose that for E0 in the a.s. spectrum, there is L0 and m0(L0) such that

(initial step) P(ΛL0(0) is (E ,m0)−good)≥ 1− 1

Lp
0
,

and the Wegner estimate holds for all L ∈ N
P(dist(σ(Hω,L),E)≥ η)≤ CE ηLd ,

then, there exists δ > 0 such that for I = (E0 −δ,E0 +δ), the operator Hω

exhibits dynamical localization in I.

In particular, pp spectrum with
exponentially decaying eigenfunctions.

▶ Usually, the Wegner estimate holds for all energies in the spectrum.
▶ The initial step holds for either strong disorder (∥Vω∥∞

>> 1) or at
spectral band edges (E near a spectral gap).
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The Machine

"I gave a seminar at Caltech in 1988, I think, on my work with Dreifus on the
multiscale analysis, which we had just finished. The title of the talk was
"Localization without tears" (...).

At the end of the seminar, Barry (Simon) told me that my title was misleading.
The Fröhlich-Spencer multiscale analysis had left the feeling of a root canal,
but after my talk he still felt like he had been to the dentist."

Abel Klein on Barry Simon’s 60th birthday
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A challenge for the machine
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The Fractional Anderson Model on ℓ2(Zd)

Hα,ω = (−∆)α +Vω, α ∈ (0,1)

▶ The fractional Laplacian is defined via the Spectral Theorem as a
function of −∆, where −∆ϕ(n) =−∑m∼n(ϕ(m)−ϕ(n)).

[Ciaurri et al. ’17, Gebert-RM’20] There exist cd ,α,Cd ,α > 0 such that

cd ,α

|n−m|d+2α
≤ |(−∆)α(n,m)| ≤ Cd ,α

|n−m|d+2α
, n ̸= m

▶ Vωϕ(n) = ωnϕ(n), with ω := (ωn)n∈Zd iid random variables supported
in [0,M], M > 0.

The fractional Anderson model is a long-range random operator.
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The Fractional Anderson Model on ℓ2(Zd)

Hα,ω = (−∆)α +Vω, α ∈ (0,1)

Theorem (Disertori-Maturana-Escobar-RM’23)
For d ≥ 1 and α ∈ (0,1), and M large enough (i.e. ∥Vω∥∞

>> 1), Hω,α

exhibits pp spectrum everywhere in its a.s. spectrum, with polynomially
decaying e.f.
For any ϕ ∈ ℓ2(Zd) with compact support,

sup
t

∥∥|X |e−itHω ϕ
∥∥< ∞

with probability one.

▶ What about localization for weak disorder, at spectral band edges?
Problem : MSA does not work in all its generality.
Question : does the MSA work in d = 1 for α ≈ 1? (work in progress).

▶ Conjecture : The fAM does not exhibit dynamical localization.

16 / 19



The Fractional Anderson Model on ℓ2(Zd)

Hα,ω = (−∆)α +Vω, α ∈ (0,1)

Theorem (Disertori-Maturana-Escobar-RM’23)
For d ≥ 1 and α ∈ (0,1), and M large enough (i.e. ∥Vω∥∞

>> 1), Hω,α

exhibits pp spectrum everywhere in its a.s. spectrum, with polynomially
decaying e.f.
For any ϕ ∈ ℓ2(Zd) with compact support,

sup
t

∥∥|X |e−itHω ϕ
∥∥< ∞

with probability one.

▶ What about localization for weak disorder, at spectral band edges?

Problem : MSA does not work in all its generality.
Question : does the MSA work in d = 1 for α ≈ 1? (work in progress).

▶ Conjecture : The fAM does not exhibit dynamical localization.

16 / 19



The Fractional Anderson Model on ℓ2(Zd)

Hα,ω = (−∆)α +Vω, α ∈ (0,1)

Theorem (Disertori-Maturana-Escobar-RM’23)
For d ≥ 1 and α ∈ (0,1), and M large enough (i.e. ∥Vω∥∞

>> 1), Hω,α

exhibits pp spectrum everywhere in its a.s. spectrum, with polynomially
decaying e.f.
For any ϕ ∈ ℓ2(Zd) with compact support,

sup
t

∥∥|X |e−itHω ϕ
∥∥< ∞

with probability one.

▶ What about localization for weak disorder, at spectral band edges?
Problem : MSA does not work in all its generality.

Question : does the MSA work in d = 1 for α ≈ 1? (work in progress).

▶ Conjecture : The fAM does not exhibit dynamical localization.

16 / 19



The Fractional Anderson Model on ℓ2(Zd)

Hα,ω = (−∆)α +Vω, α ∈ (0,1)

Theorem (Disertori-Maturana-Escobar-RM’23)
For d ≥ 1 and α ∈ (0,1), and M large enough (i.e. ∥Vω∥∞

>> 1), Hω,α

exhibits pp spectrum everywhere in its a.s. spectrum, with polynomially
decaying e.f.
For any ϕ ∈ ℓ2(Zd) with compact support,

sup
t

∥∥|X |e−itHω ϕ
∥∥< ∞

with probability one.

▶ What about localization for weak disorder, at spectral band edges?
Problem : MSA does not work in all its generality.
Question : does the MSA work in d = 1 for α ≈ 1 ? (work in progress).

▶ Conjecture : The fAM does not exhibit dynamical localization.

16 / 19



The Fractional Anderson Model on ℓ2(Zd)

Hα,ω = (−∆)α +Vω, α ∈ (0,1)

Theorem (Disertori-Maturana-Escobar-RM’23)
For d ≥ 1 and α ∈ (0,1), and M large enough (i.e. ∥Vω∥∞

>> 1), Hω,α

exhibits pp spectrum everywhere in its a.s. spectrum, with polynomially
decaying e.f.
For any ϕ ∈ ℓ2(Zd) with compact support,

sup
t

∥∥|X |e−itHω ϕ
∥∥< ∞

with probability one.

▶ What about localization for weak disorder, at spectral band edges?
Problem : MSA does not work in all its generality.
Question : does the MSA work in d = 1 for α ≈ 1 ? (work in progress).

▶ Conjecture : The fAM does not exhibit dynamical localization.

16 / 19



Discussion : the definition of dynamical localization

Recent work on localization and MSA for long-range operators : Shi ’21,
Jian-Sun’23, Shi-Wen’23, Sun-Wang ’24.

Theorem
Jian-Sun’23 : power-law dynamical localization
Hω = H0 +Vω, with

|H0(x ,y)| ≤
1

|x − y |γ , γ > 1800d

There exists p such that

sup
t

∥∥|X |pe−itHωϕ
∥∥< ∞.
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Why use a strong notion of dynamical localization

• [Germinet-Klein’07] Characterization of localization and delocalization
energies using transport exponents.

• [Germinet-Klein-Schenker’07] Explicit bound on transport in the delocalized
energies for the random Landau model in the transition between localized and
delocalized states [Bellissard-van Elst-Schulz-Baldes’94, Aizenman-Graf’98]

Bn−1 Bn Bn+1

localization

disjoint bands condition
spectral band

spectral gaps

∃ transport

λ 2M < 2B

This also holds in the disordered Haldane model (2d). Work in progress with
V. Rossi, G. Panati.

Question : standard mechanism for metal-insulator transition in generic
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Thank you for your attention !

Workshop RAD - Recent Advanced in Disordered systems

April 7-9, 2025

CY Advanced Studies, Campus Neuville, CY Cergy Paris University.

Speakers : Margherita Disertori (Bonn), Alain Joye (Grenoble), Benoit Duçot
(Paris), Mostafa Sabri (Abu Dhabi), Houssam Abdul-Rahman (Abu Dhabi),
Rudolph Römer (Warwick), Cristopher Cedzich (Düsseldorf), Xiaolin Zeng
(Strasbourg).

Organizers : Hakim Boumaza and CRM

Info : crojasmo -at- cyu.fr
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Lifshitz Tails
The Integrated density of States (IDS) is defined as follows (when it exists)
Hω|Λ restriction of Hω to a cube Λ.

(IDS) N(E) := lim
Λ↗Zd

♯{eigenvalues ofHω|Λ ≤ E}
vol(Λ)

−∆ + V0

Ed/2

−∆ + Vωe−E−d/2

E

N(E)

• For the Anderson model, the IDS exists and it is deterministic.

• Asymptotics near infimum of spectrum E0 : large deviation principle.

Lifshitz Tails N(E)∼ e−E−d/2
E ↘ E0

• This is an ingredient in proofs of localization at spectral band edges.

Just a few names : Pastur, Klopp, Kirsch, Simon, Veselić, Raikov...
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Fractional Lifshitz tails : the continuous case
The fractional Anderson model : Hα,ω = (−∆)α +Vω

The fractional Laplacian on L2(Rd) :

(−∆)αu(x) := Cd ,α lim
r→0+

∫
Rd\Br (x)

u(x)−u(y)

|x − y |d+2α
dy

Ten equivalent definitions of the fractional Laplacian, M. Kwasnicki’17

Fractional Anderson model on L2(Rd) : fractional Lifshitz tails

N(E)∼ e−E−d/2α

, E ↘ E0

▶ Okura’77 : Case of Poissonian random potential.
▶ Pietruska-Paluba, Kaleta’19 : Case of Anderson potentials.

Probabilistic proofs based on path integrals in terms of Lévy processes.

Related results for deterministic operators : Carmona- Chen–Masters -Simon’89
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Fractional Lifshitz tails : the discrete case, d ≥ 1

Theorem (Gebert-RM’20)
Fractional Lifshitz Tails : the IDS N exists and

N(E)∼ e−E− d
2α
, E ↘ 0

Proof : Let χL be the characteristic function of the cube Λ = [−L,L]d ∩Zd .
The finite-volume restriction of Hα,ω given by Hα,L = χL Hα,ωχL . Then

N(E) = lim
Λ

1
|Λ|E(trχ(−∞,E](Hα,L))

x 7→ xs is operator monotone for s ∈ (0,1], i.e. A,B s.a. operators with 0 ≤ A ≤ B,
then 0 ≤ As ≤ Bs for s ∈ (0,1]. We obtain the Dirichlet-Neumann bracketing :

(−∆N
Λ)

α ≤ χL(−∆)α
χL ≤ (−∆D

Λ)
α

Obtain upper and lower bounds for N(E) as in the case of the Anderson model, we
get all relevant bounds with exponents α.
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Corollary (Disertori-Maturana Escobar-RM’24)
For α ∈ (0,1), let Hα,ω = (−∆)α +λVω on ℓ2(Zd), with (ωn)n∈Zd iid random
variables with bounded density. Then, for λ > 0 large enough,

i. Hα,ω exhibits pure point spectrum, with polynomially decaying
eigenfunctions.

i.. If α ∈ ( 1
2 ,1), for any ψ0 ∈ ℓ2(Zd) compactly supported,

sup
t
∥|X |e−itHα,ω ψ0∥< ∞ a.s.

Note that we cannot prove dynamical localization in the usual sense, in
particular, we cannot prove that the system is an insulator.

Conjecture : there is no dynamical localization.
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