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Part |.
The sandbox: quantum Hall effect
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Overview

Physics: Off-diagonal response; Integer and fractional QHE
Metrology: Definition of the kg

The Landau Hamiltonian

Charge pumping

Index of a pair of projections

Topological phases

v VvV VvV VvV VvV VvV V

Anyons
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]
Quantum Hall effect

Quantized resistance:

Example of off-diagonal response

The setting:

v
v.Klitzing-Dorda-Pepper (1980)
1 2
og=—= e—n, nez
Pzy h
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http://www.math.ubc.ca/~sbach/Hall.MOV
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Fractional QHE

25

R.L. Willett, J.P. Eisenstein,
|| H.L. Stormer, D.C. Tsui,
30 A.C. Gossard, and J.H. En-
MAGNETIC FIELD [T} 515'7'57'; (';;;;-) Rev. Lett. 59,

TR
20
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The kilogram — 2018
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S| base unit: kilogram (kg)

The kilogram, symbol kg, is the S unit of mass. It is defined by taking the fixed numerical value
of the Planck constant h to be 6.626 070 15 x 10~ when expressed in the unit | s, which is equal
to kg m?s™, where the metre and the second are defined in terms of ¢ and Avcs.

This definition implies the exact relation h = 6.626 070 15 x 103 kg m? 5. Inverting this relation gives
an exact expression for the kilogram in terms of the three defining constants h, Avcs and ¢:
h 2

Tke=gE6005x10% ™ °
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Landau Hamiltonian

o £
o
B

J

Faraday's law: Time-dependent ® yields electromotive force £.

Vector potential in the ¢ direction:

) P
A, = Constant B field + Flux ® = —By + o
s
Hamiltonian:
Y

(-22 + (10, — eAn)?) + V(y)

V': boundary conditions

e Topological states
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Laughlin’s argument

> Spec(Hp) = (n+ 3)eB, n € N, independent of ®.
> Eigenspaces are infinitely degenerate: ‘Landau levels’
> Eigenfunctions are exponentially localized at

const (l - eq>) leZ
2

> Recall: Many-body ground state given by P = x(_ ,(Ho)

Spectral flow ® — & + 27”:

————n =1
———n=0

b &+ 2

Adiabatic increase ® — & + 2?” pumps integer charge if u € gap
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Laughlin’s argument

In the punctured plane geometry:
Let

E]
Then
2noy(P) = Ind(P,UPU") € Z

Why U? If
H=(-iV - A)?+7V,
then
UHU* = (—iV — Varg(z) — A)? +V

so U inserts unit flux
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|
Brief history

v VvV Vv V

v VvV VvV VvV V

Laughlin 1981: Flux insertion and gauge invariance

Halperin 1982: Extended edge states
Thouless-Kohomoto-Nightingale-den Nijs 1982: Stokes theorem
Avron-Seiler-Simon 1983: Topology of line bundles

Frohlich-Kerler-Marchetti-Studer 1991+: Field theories
Avron-Seiler-Simon 1994: Index of Fredholm operators
Bellissard-van Elst-Schulz-Baldes 1994: Non-commutative geometry

Aizenman-Graf 1997: Anderson localization and Hall plateaux
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Index of projections

Two self-adjoint projections P, Q on H:
C=P-Q, S=1-P-Q
Then
(i)CS + SC =0, (iC?+ 5% =1
Consequence: If Cy = A\, then by (i)
C(Sy) = —A(SY)
and if Sv = 0 by (ii)
0= (1, S%) = 1 — A2
Conclusion: (Avron-Seiler-Simon 1994)
TP QP = SN =y
J
=dimKer(P-Q —1) —dimKer(P-Q +1) € Z
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Fredholm index

In the quantum Hall effect,
Q =UPU*
Let
T =PUP, TT"=PQP, T'T=UQPQU
Hence index of projections is the Fredholm index of T': PH — PH.:

dim Ker(TT*) — dimKer(7T*T) = Tr(P — PQP) — Tr(P — U"QPQU)
— Tx(P - PQP) - Tx(Q — QPQ)
=Tr((P - Q)°)

since
(P-QPP=(P-Q(1-QP=P1L-Q)P
~(P-QPQ=(P-Q)(1-P)Q=-Q(1-P)Q
 Ssen Topological states GSSI, February 2025 21/ 135
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Topological invariance

The index is constant under ‘deformations'’:

> For any unitary V, let @ = VPV*. Then
Ind(P,UPU*) = Ind(Q, UQU™)
> If U — V is compact, then
Ind(P,UPU*) = Ind(P, VPV*)
> If Uy is a strongly continuous one-parameter group, then
Ind(P, U,PU;) = 0

for all ¢
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Summary

> Hall conductance = charge transport by flux insertion

index of pair of Fermi projections

> Charge transport =

Consequences:
> Hall conductance is an integer
> Topological stability

Question:
Where are the fractions?

Answer requires interactions

e Topological states
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An interacting Hamiltonian

Consider the Hamiltonian
H,(\) = H° + \V — uN
where
HY = Z ay oPoo! (T — Y)ay o N = Za}iﬂam,o
©,y,0,0" z,0
V = Z a;pax’avmg/ (x — y)a;p,ayp/

x,y,0,0"

> a ,: annihilation operator, where 2 € (Z/LZ)* and o € {1, |}
> Decay of kernels:

Cn
ha’o” - s |Vo,o/ (4 — S T W
s = )l ool =) < s

forall N e N
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The IQHE phase

Assumption: Spectral gap for H? — uN

Let ou(A) be the Hall conductivity for H,,(\) in the limits
1. Infinite volume: L — oo
2. Zero temperature: T'— 0

Theorem. [Giuliani-Mastropietro-Porta 2017]
For || sufficiently small,

ou(A) = ou(0)

> General result for concrete model
> Gap assumption only for free Hamiltonian

> Methods: Cluster expansion, using Ward identities and analytic
continuation

> Consequence: FQHE requires strong interactions
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-
Experiments in FQHE

Fractional charge:

70 ’

r ,

Current noise, S; (1022 A2 Hz')

t=073

b | 1

0 200 400

Backscattered current, /g (pA)

Nakamura et al 2020

de-Picciotto et al 1997

More on that later!
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Part II.
Topological phases of matter
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Overview

Beyond Fermi projections

C* algebras

Generator of dynamics

States

Topological phases and topological indices

The spectral flow
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N-fermions

> Hilbert space H = N--- N

> Hamiltonian

N
HN:ZhiJr)\W

i=1
for example h; = —3A,, + V(z;) on # = L?(RY)
> Non-interacting (A = 0) many-body ground state

Oy =1 A Ny

where 1); is eigenvector for the jth lowest eigenvalue
> Equivalently: Fermi projection Py
> P makes sense in infinite volume, N — oo limit, finite density

If A # 0, no Fermi projection ~» no index!
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General setting

> Algebra of observables A: A C*-algebra

> Banach algebra
> with (conjugate linear) involution A — A*
> such that || AA*|| = [|A||2
> (Heisenberg) dynamics: A strongly continuous 1-parameter group of
*_automorphisms 7

> t+— 7,(A) is continuous for all A € A

> Tt(A + B) = Tt(A) + Tt(B) and Tt(AB) = Tt(A)Tt(B)
> ’Tt(A*) = Tt(A)*

> [ (A)] = [lAll

> State: A bounded linear functional w : A — C such that w(1) =1
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General setting: Example

> Algebra
A=B(H)
> Dynamics _ _
Tt(A) —_ efltHAeltH H = H*
> State

w(4) = (@,48)  ||o] =1
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Algebras: Examples

> Cp(X): Continuous functions vanishing at co on LCHS X
Abelian algebra ~~ classical mechanics

> Theorem. If A is a finite dimensional C* algebra, then
A @ My,
J

where M, are full matrix algebras
> The set of compact operators K () on a separable Hilbert space H
> Any norm-closed subalgebra of B(#) on a Hilbert space H
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Fermions

> H the one-particle Hilbert space

> Algebra of canonical anticommutation relations A(H), generated by

{1y uda(f): f e H}

with relations

{a(f),a(g)} =0, {a(f)*v a(g)*} =0
{a(f),a(9)"} = (f,9)n -1

Example: H = 2(Z4;C")
Notation: a, j = a(d; ® e;) and for any A C Z¢,

Ap : Algebra generated by {1} U{a,;:xz € A,j € N,}
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Quantum spin systems

> For all z € Z%: Finite dimensional Hilbert space H, ~ C"
> For any finite subset A C Z¢:

-AA = ®x€AB(Hx)
> For A; C Ag: Injection Ap, < Ap, by
Ac Ay, — A® 1p0\0, € Ap,

> Algebra of local observables:

Aloc = U AA
A

> C* algebra
A= Toc”-”
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Topological states GSSI, February 2025 45 / 135



The toric code model

Finite volume example:

Toric code Hamiltonian (Bravyi, Kitaev 2003)
here H, = C"

Hp = — Z AU—ZBf

vivertex f:face
where
1 3
Av=low By =]lo
TEV zef

The graph A can be embedded on a compact oriented surface with genus g

Theorem. (i) The ground state space is 49-dimensional.
(i) The spectral gap is v = 2, uniformly in |A|
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The infinite volume limit

Infinite graph T', with (A;,)pen such that

A, C Ay (n <m)
Veel,dnst. x € A,

For any A € Ay,
lim i[Hp,, A] = 6(A)
n—oo

since [Hy,,, A] is eventually constant
4 is an unbounded densely defined derivation of A:

§(AB) = §(A)B + A5(B)

e Topological states G581, February 2025
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Infinite volume limit

Alternatively,

lim e_itHAn Ae_itHAn — Tt(A)
n—r00

exists.

In fact 74(A) is the unique solution of

d

%Tt(A) =T7:(0(A)) T(A) =A

In general, no finite propagation speed:

Tt(A) ¢ Ajoc even if A € Ap.

e Topological states G581, February 2025
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-
Local generators
> F={f:[0,00) = (0,00) : Vn € N sup, f(r)(1+7)" < oo}
> A € Ais almost localized at x if there is A, € Ap, () and f € F
1A = Anll < [[Allf(n)

Notation: Ao OF Al
> Equivalently:

AcAl = A Bl <20AIlIBIf(x —yl)

forally € T"and B € Ay,

> 0-chain: Function h:I' — A such that h, € Ag, f uniform in x
> Local generator: Family

Hy=> hy,  ACT finite
TEA
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N
Lieb-Robinson bound

Theorem. [Lieb-Robinson 1972, Nachtergaele-Sims 2006, ...]
The limit

7t(A) = lim e A AeitHA
A—T
exists, defines a dynamics on A and satisfies

Tt (Aaloc) C -Aaloc

LGA: locally generated dynamics
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Representations

Question: Can A be represented in Hilbert space?
Theorem. [Gelfand-Naimark 1943, Segal 1947,...]

Let w be a state on A. Then there is a Hilbert space H,,, a representation
7w+ A — B(Hy) and a unit vector €, such that

w(A) = (Qu, 7 (A)82)

The representation is cyclic: m,(A), is dense in H,,.
Representation:
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Equivalence of representations

Two reps 7; on H; are unitarily equivalent if
Um (A)U* = me(A)

where U : H1 — Ho is unitary

GNS is unique up to unitary equivalence: Given (H,m,Q), (H'7', ),
Ur(A)Q =7'(A)

Indeed:

' (B)Un(A)Q = 7' (BA)Q) = Ur(BA)Q = Un(B)7(A)Q

implies
7' (B)U = Un(B)

Moreover,

(Ur(B)Q,Un(A)Q) = (7' (B)Y, 7' (A)Q) = w(B*A) = (n(B)Q, n(A)Q)

so is an isometry.
_ Topological states GSSI, February 2025 58 / 135



Topological states GSSI, February 2025 59 / 135



(In)equivalence of representations

For quantum spin systems:

Theorem.
The GNS reps of wi,ws are equivalent iff for e > 0, there is T > 0 such that

wi(A) —wa(A)] < el All
for all A € Ap, (o)

~» Two states are equivalent iff they are almost equal at infinity /
thermodynamically equivalent / local perturbations of each other

_ Topological states GSSI, February 2025 60 / 135



Topological states GSSI, February 2025 61 / 135



Implementability

> A dynamics is implementable in a rep if
m(1i(A)) = Ui (A)Uy

> In general, not the case (orthogonality catastrophe):
the states w and w o 7y differ at infinity

> Proposition. If w = w o 7, then 71 is implementable.
Indeed, the representations

(Hes, T, ) of w and (Hy, 7wy © 71, ) of wo Ty
are unitarily equivalent and
Ui, = Oy

> By Stone's theorem U; = eltv with H,Q =0
_ Topological states GSSI, February 2025 62 / 135
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|
What is a phase?

> Physicist's answer: Two states are in the same phase if one can be
smoothly deformed into the other without crossing a phase transition.

> Gapped ground states: |¢;) ground state of H; with spectral gap g;
above GS energy FE;:
In the same phase if there is

0,1 2 s+ H(s) = H(s)*  H(0)=Hy, H(1) = Hy

and H(s) is uniformly gapped
Note: The family |¢)(s)) of ground states is interpolating family
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|
Gapped ground state

> w is a ground state of 7 if
—iw(A*6(A)) >0

In GNS:
(W, Hyth) >0 (D, Hy QW) =0

> w is a gapped ground state if
—iw(A%6(A)) > gw(A*A) w(A)=0
In GNS:
inf (¢, Ho) 2 g{v, ¥)

G 10,
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Finite volume limits

Consider a family of vectors ¥4 that are ground states of Hp with a
spectral gap ga. Then

> The family of states (14, (-)1a) is compact

> Any limiting point w is an algebraic ground state

> Gaps can only open :
Theorem. [B-Dybalsky-Naaijkens 2016]
Let E be such that (E — €, E + €) N Spec(HpA — Ey) for all finite A,
then E ¢ Spec(H,,)
> Analogies
math: strong resolvent convergence
physics: edge states disappear
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Gapped ground state phase

Definition. [Hastings, Chen-Gu-Wen,...]
w;,i = 0,1 gapped ground states of Tt(l

> Tt(i) are LGAs with generators h(?)

) are in the same phase if

(s)

> there is a smooth family of 0-chains h(s) such that Tth has a gapped

ground state w(®)

Theorem. [Hastings-Wen 2005, B-Michalakis-Nachtergaele-Sims 2010,
Moon-Ogata 2020]
There is an LGA oy such that

w1 =WwWpoaq

Vocabulary: ‘quasi-adiabatic continuation’, or ‘spectral flow', or
‘automorphic equivalence’
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Spectral flow via finite volume limit

H has a gap g above ground state energy, P is ground state projection

Consider an odd function W € L}(R;R) N L=(R;R) such that

i W) =—ict  (|¢] > gap)
i. W) =0t  (t| = )

The linear map on A
A s T(A) = W (—ady)(A) = / W (t)eltT Ae=tH gy
is the inverse of i[H, -] on off-diagonal operators

A=TI(G[H, A))

whenever A = PAP+ + PLAP

e Topological states G581, February 2025
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Spectral flow via finite volume

> Recall Z(A) = [ W(t)r(A)dt
> Check:

/ W () Hi[H, Ale " dt = / W ()" =mi(\ — u)dPyAdP,dt
= / W (i — A)i(A — p)dPyAdP,
[A—pl>g

[A—pl>g

> A€ Ayoc implies 74 (A) € Aqaloc and since |WW| € F,
Z(Aaloc) C Aaloc
> Extends to map on O-chains:
I(h)fr = I(hx)
-~ sven ] Topological states GSSI, February 2025 74 / 135
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Properties

> For any operator A, the operator
A:=A-1I(i[H, A])

is block diagonal:

[A,P]=0
> Parallel transport: For family H(s):
i[Z(H),P] =iZ([H,P)) = —Z(i[H,P]) = P

since P2 = P implies P is off-diagonal
> Conclusion: The 0-chain k = I(h) generates the spectral flow

S Ws = WO Qg

> Holds for limits of finite volume ground states, also for algebraic
ground states
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Remarks

> The generator Z(H) replaces the standard Kato generator
i[P, P]
and it is explicitly local
> The map Z is extremely useful:
> For gapped systems: Proof of the adiabatic theorem [B-De
Roeck-Fraas 2018, Monaco-Teufel 2019]
> For perturbation closing the gap: Construction of non-equilibrium

steady state (NEASS) [Teufel 2019,...]
> In both settings: Validity of linear response

> Variations on the theme yield exponential clustering for gapped
systems: [Hastings-Koma 2006, Nachtergaele-Sims 2006, B-Bols-De
Roeck-Fraas 2021]

(¢, ABY) — (4, APBY)| < C(A,B)f(r) ¢ =Py
where f € F and 7 is the distance between the supports of A, B
_ Topological states GSSI, February 2025 78 / 135
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-
What is a quantum phase?

> Proving that 7; is gapped is notoriously difficult, so:

> Definition. Two pure states w, v are equivalent if
v=woa

where o is an LGA

> (Gapped ground state phases) are equivalence classes of states
In other words: Connected components of the state space

> Short Range Entangled states: equivalence class of the product states
wo is a product state if

WO(AXBy) = wo(AX)wo(By) XNy =90
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Stabilization

> Make definition independent of the ‘ambient space’:
Definition. Two pure states wy,ws on algebras A;, Ao are stably
equivalent if there are product states vy, 5 on algebras A}, A} such
that
w1 @V~ w2V
on A; @ A ~ Ay @ AS,.
Notation: w; ~ wo
> A state is stably SRE if it is stably equivalent to a product state.

Remark: The set of stable equivalence classes is a monoid, with the class of
the product state wg being the identity

Natural question: Are there ‘invertible elements’?

> Definition. A state w is invertible if there is a state @ such that

w®w ~ wo
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Free fermions

Back to the CAR algebra A(H)
A pure gauge invariant quasi-free state on A(H) is defined by

wp(a*(fn) .- a”(fi)algr) - algm)) = nmdet ((gi, Pf)ij=1) -

where P = P* = P? (physically: the Fermi projection)
Since A(H1 @ Ha) = A(H1) AN A(Hz2), we have the stacking property

wp, Q@ Wp, = WP gP,

Proposition. [B-Bols-Rahnama 2024]
If P is translation invariant, then o (P) = 0 implies wp is stably SRE.

Furthermore: Any quasi-free state is invertible and oy (P) € Z, see
[Kapustin-Sopenko 2020]
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Some questions

v

Stably SRE states are trivial. Role of local symmetries?
~> Symmetry Protected Topological (SPT) phases

Difference between stably SRE and invertible?

>

> Classification of non-invertible phases?

> Construction of indices of gapped phases?
>

Higher ‘homotopy groups’, classification of cycles?

Also:

> Relationship to TQFTs?
> Proof of gaps?
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Part Il1.
Some results on quantum Hall
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Overview of existing rigorous results

For lattice systems:

v VvV VvV VvV VvV Vv V

One dimension: Classification of SPT phases

One dimension: Classification of SPT pumps

One dimension: Parametrized phases without symmetry

Two dimensions: Quantization of Hall conductance

Two dimensions: Solvable models of intrinsic topological orders
Superselection sectors, anyons and the quantum Hall effect

Generalizations of ‘Hall conductance’ for general groups and
dimensions

e Topological states G581, February 2025
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Charge conserving Hamiltonian

Finite setting: A discrete torus A = (Z/LZ)?
Finite-range Hamiltonian
Hy= ) ®X) in AC(A)
XCA

with
P(X)=d(X)  @(X)=0ifdiam(X) >R

Assumption: Charge conservation (U(1)-symmetry)

[B(X),Qal =0  Qa=) dja,
TEA
Example

H= Y (tzy)(aiay+aja:) + U@, 9)gq) + > V(@)
d(z,y)=1 *
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Gapped ground state space

Spectral assumptions: uniformly in volume |A]

> Spectral gap: E1 — Ey > g > 0, where Fj is the ground state energy
> Rank(P) = p, where P is the ground state projection

Invariant subspace: [Qa, H] = 0 implies

QAP = PQxP

But not for any Z C A: charge fluctuations across 0Z7.

e Topological states
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Charge fluctuations

Charge conservation implies

supp([H, Qz|) supported along 07

Then,

> Koz = I([H,Qz]) € Aaloc(0Z)
> Ky describes charge fluctuations: if
Qy;=Q — Kyz, then 0z

[Qz,Pl=0 namely QP = PQ;P

Loop operators:
o 2mQy _ —2m(Qoz—Koz)o—27i(Qz—Qoz)
_ e—27ri(QBZ_Kaz) S Aaloc(az)

since Spec(Qz — Qaz) C Z.
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Loops and boundaries
e 2Rz p = pe=?mQzp
Now A is the torus, and Q = Qx
V= e—zmé _ e—27ri§_e—27r@+ =V_V,
Gap assumption implies exponential clustering:
PV_V.P = PV_PV, P

V4 are ‘Wilson loops':

[P,Vi] =0

but [P, Q_] # 0.
Importantly 0_ U 04 = 0T, but 0_ is not a boundary
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Loops and boundaries

Assume topological order
PQ,P x P

then

> If « is a boundary
VoP = Pe?™Qzp = MPQzP o p

V., acts trivially on RanP

> If v is not a boundary,
V, is a nontrivial unitary on RanP
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Algebra of loops

Theorem. [B-Bols-De Roeck-Fraas 2020]
For any gapped system with a U(1) charge and
a topologically ordered ground state space,

ViV_V VAP =™ p

where q € Z and p = Rank(P).

Rational rotation algebra

Proof by analyzing

A — det ((ei)‘(vé*@/f)*e_i)@*) P)
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Fractionalization & braiding
For an open path v

=V, (Q=PQ)

is a state of a pair of excitations
Independent on ~ since

V., Q=V, Q=0

whenever 7v,~" have the same endpoints

> Fractional charge (Laughlin, Saminadayar, Reznikov,...)
* q
<907 QR90> - <Qa QRQ> = <Qv (V'y QRV’y - QR)Q> = ;
> Braiding, anyons (..., Wen, Frohlich-Kerler,...)

_ * * _ 27'l'ig
Vap = Vo (VI VoV V)0 = Mo
_ Topological states GSSlI, February 2025 101 / 135



Topological states GSSlI, February 2025 102 / 135



Quantized transport

More can be said:
A awrQv)- —na_ _ BV, D
=Tr(VyQV, —Q)-P)

and (V,QVy — Q)_ is the operator of charge transported across the
fiducial line O_.

The theorem shows quantized charge transport:

p I Tr(V;QVe — Q)_P) = % €Q

2z

Note V} is finite volume, many-body analog of U = E
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Abelian anyons

> Configuration space of N point particles on

manifold M

Ty = MY\ {2;=2;,1<i#j<N}

M
Non-trivial topology in low dimensions Q, Vi
> Quantum mechanical pure state: e Y
one-dimensional projector i U
Py,=P,=P;, elL*y) [/»K
Of course:
Pgyo,, = Py forall 6 ¢ [0,27]

> As particles move around: Path s +— ~; € I'y and corresponding

s— P; = Pws
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Loops in configuration space

If v is a loop
Yo =M
then
Py, = Py,
Holonomy

1 =My 1y €0, 2m)
and 7, depends only on the homotopy class of ~.
Typical non-trivial loop in 2d

M
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Anyons and the braid group

We have a one-dimensional representation

n:m(Tn) = U1) vy

In this context: m(I'y) is called the coloured braid group
Anyons carry a non-trivial representation
> Theoretical possibility:
Leinaas-Myrheim 1977, Goldin-Menikoff-Sharp 1981, Wilczek 1982

> Concrete wavefunctions (quantum Hall effect):
Laughlin 1988

> Specific lattice models:
Kitaev 2003, Lewin-Wen 2005

Today: General and explicit construction of anyonic quasi-particles

_ Topological states GSSlI, February 2025 109 / 135



Topological states GSSlI, February 2025 110 / 135



Finite volume: Summary

Assumptions:

> Uniform spectral gap
> Finite ground state degeneracy p
> Local topological order

Consequences:

> ‘Flux insertion’ cycles through ground states
> op is well-defined and o = g
> Quasi-particle excitations are anyons
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Infinite volume

> Setting for QHE, anyons, in infinite volume?

> What replaces spectral gap, ground state degeneracy and topological
order?

~> Superselection sectors
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Superselection sectors: idea

Goal: to classify ‘particle states’

> To be defined with respect to a reference vacuum state
> Up to unitary equivalence

> The particle is localized
Examples:

> Gauss' law in electrodynamics: The presence of a charge can be
detected at infinity

> The anyons of QHE: An infinite string v in V,£2 can be detected at
infinity

See

> QFT fundamentals: Doplicher-Haag-Robert 1971 and
Buchholz-Fredenhagen 1982

> Non-relativistic lattice systems: Naaijkens 2011, Ogata 2022, ...
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N
DHR criterion

> Pick a representation mg is A
Concretely: the GNS of a ground state wy

> Classify representations 7 that satisfy the superselection criterion:

Veone A: 7 [ Ape 7o [ Ape

T .

A

> The particle is localized at the apex, the string is not observable

> The particle can be moved by the action of a local observable (in
7(A)), not removed
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Example of toric code

Recall
H= Y (1-A)+ > (1-By)
vivertex f:face
where
Ay =]Jer,  Br=]]7?
TEV zef
Since
[Avv Bf] =0

so finite volume ground states characterized by
A,Q2=0 BfQ =0 for all v, f

Elementary excitations:
1
V4,9, Vy = | | o
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Example of toric code

Theorem. [Alicki-Fannes-Horodecki 2007, Fiedler-Naaijkens 2015]

On 72, there is a unique gapped ground state wy which is frustration-free,
namely

wo(Ay) = wo(By) =1
For v extending to infinity and -, its truncation to the first n sites, define
py(4) = lim VAV,
Proposition. The representations
0 © Pry

satisfy the superselection criterion.

In fact, they are the GNS reps of the algebraic ground states wy o p,
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Sketch of proof

> For a = 90X,
Vo =[] 4
veX
hence
(Vo) = Q

~ wp o p, depends only on 7 only through
initial point
> Transporters:
> Move initial point & — y by mo([],c, o2)
> Move infinite string by

Vysyr = W] hm 0 ( H Von>

rCon

The limit exists and is unitary
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Sketch of proof

Let p, be given.
Pick a cone A’ and a path ' € A”:

Vi (0 © p3 ) Vi = 70 © oy
and because v/ € A’
Py rAA/c =id r AA/C

hence
70 0 py | Ape = mo | Ape

Meaning of superselection criterion:
The particle and its string can be hidden in any cone

~
Construction generalized to Kitaev's ‘quantum double models’

[Bols-Vadnerkar 2024]
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Back to QHE

I' C Z?: Upper half plane
By (A) = Lim 90 ge 0 Q) = Qp — Ky
Since K € Ayoc(OA) and Spec(@Qp) C N

BY(A) = 4(4)

where k is a 0 chain that is supported along the line HA

p=ryt g l/
. k.

Define

where (k4 )z = ki X0
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Exercise: Construct k
- F .
Since T4 = id,

r 2T .
Bn = om0 (13:) ! =id + /0 Dy (ﬂ}; o (1 >’1) dg.
Now )
8¢ <’B<I; © (Tg )71) = 5}; o ((561“ — (Sqr‘) o (Tg )71.
With qF — qF — _kr:
% <5£ ° (T‘gr)_l) T <ﬂ£ © (T;F)_l) ord odpro(rd )7,

so we pick
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QHE superselection sectors

> Start with QH Hamiltonian ¢ and assume the existence of gapped
ground state w

“(Ef;i%)) >g>0  w(A)=0

> Lemma. 7, o p satisfies the superselection criterion

> Also: One can define (p) € U(1) corresponding physically to the
braiding holonomy
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QHE

Theorem. [B-Corbelli-Fraas-Ogata 2024]
> 0(,0) — efi(27r)20H

> If there are p equivalence classes of representations satisfying the
superselection criterion, then

2oy = g/
p

for some p’ < p.

See also Kapustin-Sopenko 2020
In a TQFT setting: Fréhlich-Kerler 1991, Frohlich-Studer 1993, ...
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Concluding summary

> IQHE well understood, non-interacting fermions
> FQHE mathematically poorly understood, but progress
> More general question: ‘topological’ phases and their classification
> og is a ‘topological invariant’;
other ‘topological indices’ & their physical meaning

> Emergence of anyons, fractional charges

_ Topological states GSSI, February 2025 135 / 135



