
Topological states of matter

Sven Bachmann
The University of British Columbia

Lectures given at ‘Mathematical Challenges in Quantum Mechanics’

GSSI, February 2025



Sven Topological states GSSI, February 2025 1 / 135



Thanks!

. Alex Bols [ETH Zurich]

. Wojciech De Roeck [KU Leuven]

. Martin Fraas [UC Davis]

. Yoshiko Ogata [RIMS Kyoto]

Sven Topological states GSSI, February 2025 2 / 135



Part I.
The sandbox: quantum Hall effect
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Overview

. Physics: Off-diagonal response; Integer and fractional QHE

. Metrology: Definition of the kg

. The Landau Hamiltonian

. Charge pumping

. Index of a pair of projections

. Topological phases

. Anyons
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Quantum Hall effect

Example of off-diagonal response

The setting:

V

J

B

Quantized resistance:

v.Klitzing-Dorda-Pepper (1980)

σH =
1

ρxy
=
e2

h
n, n ∈ Z
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Fractional QHE

R.L. Willett, J.P. Eisenstein,
H.L. Stormer, D.C. Tsui,
A.C. Gossard, and J.H. En-
glish, Phys. Rev. Lett. 59,
1776 (1987).
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The kilogram – 2018
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Landau Hamiltonian

Φ̇
b

B

E

J

Faraday’s law: Time-dependent Φ yields electromotive force E .
Vector potential in the ϕ direction:

Aϕ = Constant B field + Flux Φ = −By +
Φ

2π

Hamiltonian:

HV =
1

2

(
−∂2

y + (−i∂ϕ − eAϕ)2
)

+ V (y)

V : boundary conditions
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Laughlin’s argument

. Spec(H0) = (n+ 1
2)eB, n ∈ N, independent of Φ.

. Eigenspaces are infinitely degenerate: ‘Landau levels’

. Eigenfunctions are exponentially localized at

const

(
l − e Φ

2π

)
l ∈ Z

. Recall: Many-body ground state given by P = χ(−∞,µ](H0)

Spectral flow Φ 7→ Φ + 2π
e :

b b b b b b b b

bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc

n = 0

Φ 7→ Φ + 2π

n = 1
gap

Adiabatic increase Φ 7→ Φ + 2π
e pumps integer charge if µ ∈ gap
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Laughlin’s argument

In the punctured plane geometry:
Let

U =
z

|z|
Then

2πσH(P ) = Ind(P,UPU∗) ∈ Z

Φ(t)

B

E
J

Why U? If
H = (−i∇−A)2 + V,

then
UHU∗ = (−i∇−∇arg(z)−A)2 + V

so U inserts unit flux
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Brief history

. Laughlin 1981: Flux insertion and gauge invariance

. Halperin 1982: Extended edge states

. Thouless-Kohomoto-Nightingale-den Nijs 1982: Stokes theorem

. Avron-Seiler-Simon 1983: Topology of line bundles

. Fröhlich-Kerler-Marchetti-Studer 1991+: Field theories

. Avron-Seiler-Simon 1994: Index of Fredholm operators

. Bellissard-van Elst-Schulz-Baldes 1994: Non-commutative geometry

. Aizenman-Graf 1997: Anderson localization and Hall plateaux

. ...
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Index of projections

Two self-adjoint projections P,Q on H:
C = P −Q, S = 1− P −Q

Then
(i) CS + SC = 0, (ii) C2 + S2 = 1

Consequence: If Cψ = λψ, then by (i)

C(Sψ) = −λ(Sψ)

and if Sψ = 0 by (ii)
0 = 〈ψ, S2ψ〉 = 1− λ2

Conclusion: (Avron-Seiler-Simon 1994)

Tr((P −Q)2n+1) =
∑
j

λ2n+1
j = m1 −m−1

= dim Ker(P −Q− 1)− dim Ker(P −Q+ 1) ∈ Z
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Fredholm index

In the quantum Hall effect,

Q = UPU∗

Let
T = PUP, TT ∗ = PQP, T ∗T = U∗QPQU

Hence index of projections is the Fredholm index of T : PH → PH:

dim Ker(TT ∗)− dim Ker(T ∗T ) = Tr(P − PQP )− Tr(P − U∗QPQU)

= Tr(P − PQP )− Tr(Q−QPQ)

= Tr((P −Q)3)

since

(P −Q)2P = (P −Q)(1−Q)P = P (1−Q)P

−(P −Q)2Q = (P −Q)(1− P )Q = −Q(1− P )Q
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Topological invariance

The index is constant under ‘deformations’:

. For any unitary V , let Q = V PV ∗. Then

Ind(P,UPU∗) = Ind(Q,UQU∗)

. If U − V is compact, then

Ind(P,UPU∗) = Ind(P, V PV ∗)

. If Ut is a strongly continuous one-parameter group, then

Ind(P,UtPU
∗
t ) = 0

for all t
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Summary

. Hall conductance = charge transport by flux insertion

. Charge transport = index of pair of Fermi projections

Consequences:

. Hall conductance is an integer

. Topological stability

Question:

Where are the fractions?

Answer requires interactions
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An interacting Hamiltonian

Consider the Hamiltonian

Hµ(λ) = H0 + λV − µN
where

H0 =
∑

x,y,σ,σ′

a∗x,σhσ,σ′(x− y)ay,σ′ N =
∑
x,σ

a∗x,σax,σ

V =
∑

x,y,σ,σ′

a∗x,σax,σvσ,σ′(x− y)a∗y,σ′ay,σ′

. a∗x,σ: annihilation operator, where x ∈ (Z/LZ)2 and σ ∈ {↑, ↓}

. Decay of kernels:

‖hσ,σ′(x− y)‖, ‖vσ,σ′(x− y)‖ ≤ CN
(1 + |x− y|)N

for all N ∈ N
Sven Topological states GSSI, February 2025 27 / 135



Sven Topological states GSSI, February 2025 28 / 135



The IQHE phase

Assumption: Spectral gap for H0 − µN
Let σH(λ) be the Hall conductivity for Hµ(λ) in the limits

1. Infinite volume: L→∞
2. Zero temperature: T → 0

Theorem. [Giuliani-Mastropietro-Porta 2017]
For |λ| sufficiently small,

σH(λ) = σH(0)

. General result for concrete model

. Gap assumption only for free Hamiltonian

. Methods: Cluster expansion, using Ward identities and analytic
continuation

. Consequence: FQHE requires strong interactions
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Experiments in FQHE

Fractional charge:

Nature © Macmillan Publishers Ltd 1997

letters to nature

NATURE | VOL 389 | 11 SEPTEMBER 1997 163

proportional to the quasiparticle’s charge Q ¼ e=q and to the back-
scattered current IB:

Si ¼ 2QIB ð1Þ

To realize such a measurement we utilized a quantum point contact
(QPC)—a constriction in the plane of a 2DEG—that partly reflects
the current. The high-quality 2DEG, embedded in a GaAs–AlGaAs
heterostructure, !100 nm beneath the surface, has a carrier density,
ns, of 10

11 cm−2 and a mobility, m, of 4:2 ! 106 cm2 V" 1 s" 1 at 1.5 K
in the dark. The QPC is formed by twometallic gates evaporated on
the surface of the structure, separated by an opening of !300 nm
that is a few Fermiwavelengthswide (see inset to Fig. 1). By applying
negative voltage to the gates with respect to the 2DEG, thus
imposing a local repulsive potential in the plane of the 2DEG, one
can controllably reflect the incoming current. The sample was
inserted into a dilution refrigerator with a base temperature of
!50mK. Noise measurements were made by employing an extre-
mely low-noise home-made preamplifier, placed in a 4.2 K reservoir.
The preamplifier was manufactured from GaAs transistors, grown
in our molecular beam epitaxy system. The preamplifier has a
voltage noise as low as 2:5 ! 10" 19 V2 Hz" 1 and a current noise of
1:1 ! 10" 28 A2 Hz" 1 at 4MHz.
Current fluctuations, generated in the QPC, were fed into an

inductance–capacitance–resistance (LCR) resonant circuit, with
most of the capacitance contributed by the coaxial cable which
connects the sample at 50mK to the preamplifier at 4.2 K. Outside
the cryostat the amplified signal was fed into an additional amplifier
and from there to a spectrum analyser which measured the current
fluctuations within a band of!100 kHz about a central frequency of
!4MHz. As the absolute magnitude of the noise signal is of utmost
importance, a careful calibration of the total gain from the QPC to
the spectrum analyser was done by utilizing a calibrated current
noise source. This allows the translation of the spectrum analyser
output into a spectral density of current fluctuations (current
noise). Although our amplifier has excellent characteristics it still
introduces current fluctuations into the circuit. This unwanted
current noise must be subtracted from the total measured noise
to extract the noise associated solely with the QPC. By measuring
the total current noise while varying the conductance, G, of
the unbiased sample (see Fig. 1), we deduce both the electron

temperature, T ¼ ð#Si=#GÞ=4kB (where kB is the Boltzmann con-
stant), and the contribution of our amplifier to the total noise
(extracted from the extrapolated total noise to zero conductance).
Note that the temperature we find, 57mK, is very close to that of the
sample holder.
As the temperature, T, and the applied voltage, V, across the QPC

during our measurement are both finite, the results must be
compared with a more elaborate theory than that leading to
equation (1). Such general calculations were indeed performed
numerically16. An analytical general expression for the zero-
frequency spectral density of the current fluctuations is available for
a non-interacting single one-dimensional channel and is given by17–19:

Si ¼ 2g0tð1" tÞ QVcoth
QV
2kBT

" 2kBT þ 4kBTg0t ð2Þ

where the transmission of the QPC, t, is given by the ratio between
the conductance, G, and the quantum conductance, g0 ¼ e2=h. This
dependence was verified experimentally20,21 in the absence of a
magnetic field where electron–electron interactions are believed
to be non-crucial, with Q ¼ e. The same expression, with Q ¼ e=3
and g0 ¼ e2=3h, also does not deviate significantly from the numerical
calculations16 in the limit of weak backscattering of quasiparticles in
the FQH regime at n ¼ 1

3
and in addition reduces to equation (1) in

the zero-temperature limit ðVg0tð1" tÞ ¼ IBt " IBÞ. Comparing
our data with equation (2) will thus suffice to deduce the quasi-
particles’ charge.
Quantum shot noise measurements as a function of the current

through a partly pinched QPC were performed first in the absence
of a magnetic field. The results, after calibration and subtraction of
amplifier noise, are shown in Fig. 2. The transmission of the lower-
lying quasi-one-dimensional channel in the QPC is simply deduced
from the measured conductance normalized by 2e2/h (the factor 2
accounts for spin degeneracy). Our data fit almost perfectly the
expected noise of equation (2) using the measured electron tem-
perature without any fitting parameters.
The magnetic field was then swept from zero to 14 tesla. The

two-terminal conductance exhibits Hall plateaux, expected in the
IQH and in the FQH regimes (n ¼ 2

5,
3
5,

2
3 and

1
3 are clearly visible

with a plateau width of !1 tesla around n ¼ 1
3
). At n ¼ 1

3
and full

Figure 2 Quantum shot noise as a function of direct current, I, through the QPC

without an applied magnetic field (circles). The solid line is equation (2) with the

temperature (57mK) deduced from Fig.1. The transmission, t, is 0.37.

Figure 3Quantum shot noise as a function of the backscattered current, IB, in the

FQH regime at n ¼ 1
3
for two different transmission coefficients through the QPC

(circles and squares). The solid lines correspond to equation (2) with a charge

Q ¼ e=3 and the appropriate t. For comparison the expected behaviour of the

noise for Q ¼ e and t ¼ 0:82 is shown by the broken line.

de-Picciotto et al 1997

Anyons: ARTICLESNATURE PHYSICS

Extended Data Fig. 2 | Repeatability of discrete phase jumps. a, First scan measurement of conductance versus B and δVg. This is the same data in  
Fig. 2 of the main text. b, Second scan across the same range of magnetic field using the same QPC gate voltages. As can be seen from the data, the same 
pattern of discrete jumps appear in the second scan. The second scan was taken approximately one hour after the first scan. Values of Δθ/2π extracted 
from least squares fits are shown for both scans, and show similar values for each phase jump in both scans.

NATURE PHYSICS | www.nature.com/naturephysics

Nakamura et al 2020

More on that later!
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Part II.
Topological phases of matter
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Overview

. Beyond Fermi projections

. C* algebras

. Generator of dynamics

. States

. Topological phases and topological indices

. The spectral flow
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N -fermions

. Hilbert space H = H ∧ · · · ∧H

. Hamiltonian

HN =

N∑
i=1

hi + λW

for example hi = −1
2∆xi + V (xi) on H = L2(Rd)

. Non-interacting (λ = 0) many-body ground state

ΦN = ψ1 ∧ · · · ∧ ψN

where ψj is eigenvector for the jth lowest eigenvalue
. Equivalently: Fermi projection PN
. P makes sense in infinite volume, N →∞ limit, finite density

If λ 6= 0, no Fermi projection  no index!
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General setting

. Algebra of observables A: A C*-algebra
. Banach algebra
. with (conjugate linear) involution A 7→ A∗

. such that ‖AA∗‖ = ‖A‖2
. (Heisenberg) dynamics: A strongly continuous 1-parameter group of

*-automorphisms τt
. t 7→ τt(A) is continuous for all A ∈ A
. τt(A+B) = τt(A) + τt(B) and τt(AB) = τt(A)τt(B)
. τt(A

∗) = τt(A)∗

. ‖τt(A)‖ = ‖A‖
. State: A bounded linear functional ω : A → C such that ω(1) = 1
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General setting: Example

. Algebra
A = B(H)

. Dynamics
τt(A) = e−itHAeitH H = H∗

. State
ω(A) = 〈Φ, AΦ〉 ‖Φ‖ = 1
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Algebras: Examples

. C0(X): Continuous functions vanishing at ∞ on LCHS X
Abelian algebra  classical mechanics

. Theorem. If A is a finite dimensional C* algebra, then

A '
⊕
j

Mnj

where Mnj are full matrix algebras
. The set of compact operators K(H) on a separable Hilbert space H
. Any norm-closed subalgebra of B(H) on a Hilbert space H
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Fermions

. H the one-particle Hilbert space

. Algebra of canonical anticommutation relations A(H), generated by

{1} ∪ {a(f) : f ∈ H}

with relations

{a(f), a(g)} = 0, {a(f)∗, a(g)∗} = 0

{a(f), a(g)∗} = 〈f, g〉H · 1

Example: H = l2(Zd;Cn)

Notation: ax,j = a(δx ⊗ ej) and for any Λ ⊂ Zd,

AΛ : Algebra generated by {1} ∪ {ax,j : x ∈ Λ, j ∈ Nn}
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Quantum spin systems

. For all x ∈ Zd: Finite dimensional Hilbert space Hx ' Cn

. For any finite subset Λ ⊂ Zd:

AΛ = ⊗x∈ΛB(Hx)

. For Λ1 ⊂ Λ2: Injection AΛ1 ↪→ AΛ2 by

A ∈ AΛ1 → A⊗ 1Λ2\Λ1
∈ AΛ2

. Algebra of local observables:

Aloc =
⋃
Λ

AΛ

. C* algebra
A = Aloc

‖·‖

Sven Topological states GSSI, February 2025 44 / 135



Sven Topological states GSSI, February 2025 45 / 135



The toric code model

Finite volume example:

Toric code Hamiltonian (Bravyi, Kitaev 2003)
here Hx = Cn

HΛ = −
∑

v:vertex

Av −
∑
f :face

Bf

where

Av =
∏
x∈v

σ1
x, Bf =

∏
x∈f

σ3
x

v

f

The graph Λ can be embedded on a compact oriented surface with genus g
Theorem. (i) The ground state space is 4g-dimensional.
(ii) The spectral gap is γ = 2, uniformly in |Λ|
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The infinite volume limit

Infinite graph Γ, with (Λn)n∈N such that

Λn ⊂ Λm (n < m)

∀x ∈ Γ, ∃n s.t. x ∈ Λn

For any A ∈ Aloc,
lim
n→∞

i[HΛn , A] = δ(A)

since [HΛn , A] is eventually constant
δ is an unbounded densely defined derivation of A:

δ(AB) = δ(A)B +Aδ(B)
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Infinite volume limit

Alternatively,
lim
n→∞

e−itHΛnAe−itHΛn = τt(A)

exists.
In fact τt(A) is the unique solution of

d

dt
τt(A) = τt(δ(A)) τ0(A) = A

In general, no finite propagation speed:

τt(A) /∈ Aloc even if A ∈ Aloc
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Local generators

. F = {f : [0,∞)→ (0,∞) : ∀n ∈ N supr f(r)(1 + r)n <∞}

. A ∈ A is almost localized at x if there is An ∈ ABn(x) and f ∈ F

‖A−An‖ ≤ ‖A‖f(n)

Notation: Aaloc or Afx
. Equivalently:

A ∈ Afx ⇐⇒ ‖[A,B]‖ ≤ 2‖A‖‖B‖f(|x− y|)

for all y ∈ Γ and B ∈ A{y}
. 0-chain: Function h : Γ→ A such that hx ∈ Afx, f uniform in x
. Local generator: Family

HΛ =
∑
x∈Λ

hx, Λ ⊂ Γ finite
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Lieb-Robinson bound

Theorem. [Lieb-Robinson 1972, Nachtergaele-Sims 2006,...]
The limit

τt(A) = lim
Λ→Γ

e−itHΛAeitHΛ

exists, defines a dynamics on A and satisfies

τt(Aaloc) ⊂ Aaloc

LGA: locally generated dynamics
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Representations

Question: Can A be represented in Hilbert space?
Theorem. [Gelfand-Naimark 1943, Segal 1947,...]
Let ω be a state on A. Then there is a Hilbert space Hω, a representation
πω : A → B(Hω) and a unit vector Ωω such that

ω(A) = 〈Ωω, πω(A)Ωω〉

The representation is cyclic: πω(A)Ωω is dense in Hω.
Representation:

π(AB) = π(A)π(B)

π(A+ λB) = π(A) + λπ(B)

π(A∗) = π(A)∗
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Equivalence of representations

Two reps πj on Hj are unitarily equivalent if

Uπ1(A)U∗ = π2(A)

where U : H1 → H2 is unitary
GNS is unique up to unitary equivalence: Given (H, π,Ω), (H′π′,Ω′),

Uπ(A)Ω = π′(A)Ω′

Indeed:

π′(B)Uπ(A)Ω = π′(BA)Ω′ = Uπ(BA)Ω = Uπ(B)π(A)Ω

implies
π′(B)U = Uπ(B)

Moreover,

〈Uπ(B)Ω, Uπ(A)Ω〉 = 〈π′(B)Ω′, π′(A)Ω′〉 = ω(B∗A) = 〈π(B)Ω, π(A)Ω〉
so is an isometry.
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(In)equivalence of representations

For quantum spin systems:

Theorem.
The GNS reps of ω1, ω2 are equivalent iff for ε > 0, there is r > 0 such that

|ω1(A)− ω2(A)| < ε‖A‖

for all A ∈ ABr(0)c

 Two states are equivalent iff they are almost equal at infinity /
thermodynamically equivalent / local perturbations of each other
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Implementability

. A dynamics is implementable in a rep if

π(τt(A)) = U∗t π(A)Ut

. In general, not the case (orthogonality catastrophe):
the states ω and ω ◦ τt differ at infinity

. Proposition. If ω = ω ◦ τt, then τt is implementable.
Indeed, the representations

(Hω, πω,Ωω) of ω and (Hω, πω ◦ τt,Ωω) of ω ◦ τt

are unitarily equivalent and

UtΩω = Ωω

. By Stone’s theorem Ut = eitHω with HωΩ = 0
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What is a phase?

. Physicist’s answer: Two states are in the same phase if one can be
smoothly deformed into the other without crossing a phase transition.

. Gapped ground states: |ψi〉 ground state of Hi with spectral gap gi
above GS energy Ei:
In the same phase if there is

[0, 1] 3 s 7→ H(s) = H(s)∗ H(0) = H1, H(1) = H2

and H(s) is uniformly gapped
Note: The family |ψ(s)〉 of ground states is interpolating family
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Gapped ground state

. ω is a ground state of τt if

−iω(A∗δ(A)) ≥ 0

In GNS:
〈ψ,Hωψ〉 ≥ 0 〈Ωω, HωΩω〉 = 0

. ω is a gapped ground state if

−iω(A∗δ(A)) ≥ gω(A∗A) ω(A) = 0

In GNS:
inf
ψ⊥Ωω

〈ψ,Hωψ〉 ≥ g〈ψ,ψ〉
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Finite volume limits

Consider a family of vectors ψΛ that are ground states of HΛ with a
spectral gap gΛ. Then

. The family of states 〈ψΛ, (·)ψΛ〉 is compact

. Any limiting point ω is an algebraic ground state

. Gaps can only open :
Theorem. [B-Dybalsky-Naaijkens 2016]
Let E be such that (E − ε, E + ε) ∩ Spec(HΛ − EΛ) for all finite Λ,
then E /∈ Spec(Hω)

. Analogies
math: strong resolvent convergence
physics: edge states disappear
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Gapped ground state phase

Definition. [Hastings, Chen-Gu-Wen,...]
ωi, i = 0, 1 gapped ground states of τ (i)

t are in the same phase if

. τ
(i)
t are LGAs with generators h(i)

. there is a smooth family of 0-chains h(s) such that τh(s)
t has a gapped

ground state ω(s)

Theorem. [Hastings-Wen 2005, B-Michalakis-Nachtergaele-Sims 2010,
Moon-Ogata 2020]
There is an LGA αs such that

ω1 = ω0 ◦ α1

Vocabulary: ‘quasi-adiabatic continuation’, or ‘spectral flow’, or
‘automorphic equivalence’
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Spectral flow via finite volume limit

H has a gap g above ground state energy, P is ground state projection

Consider an odd function W ∈ L1(R;R) ∩ L∞(R;R) such that

i. Ŵ (ξ) = −iξ−1 (|ξ| > gap)

ii. W (t) = O(t−∞) (|t| → ∞)

The linear map on A

A 7→ I(A) := Ŵ (−adH)(A) =

∫ ∞
−∞

W (t)eitHAe−itHdt

is the inverse of i[H, ·] on off-diagonal operators

A = I(i[H,A])

whenever A = PAP⊥ + P⊥AP
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Spectral flow via finite volume

. Recall I(A) =
∫
W (t)τt(A)dt

. Check:∫ ∞
−∞

W (t)eitH i[H,A]e−itHdt =

∫
W (t)eit(λ−µ)i(λ− µ)dPλAdPµdt

=

∫
|λ−µ|>g

Ŵ (µ− λ)i(λ− µ)dPλAdPµ

=

∫
|λ−µ|>g

dPλAdPµ = A

. A ∈ Aaloc implies τt(A) ∈ Aaloc and since |W | ∈ F ,

I(Aaloc) ⊂ Aaloc

. Extends to map on 0-chains:

I(h)x := I(hx)
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Properties

. For any operator A, the operator

A := A− I(i[H,A])

is block diagonal:
[A,P ] = 0

. Parallel transport: For family H(s):

i[I(Ḣ), P ] = iI([Ḣ, P ]) = −I(i[H, Ṗ ]) = Ṗ

since P 2 = P implies Ṗ is off-diagonal
. Conclusion: The 0-chain k = I

(
ḣ
)
generates the spectral flow

s 7→ ωs = ω ◦ αs
. Holds for limits of finite volume ground states, also for algebraic

ground states
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Remarks

. The generator I(Ḣ) replaces the standard Kato generator

i[Ṗ , P ]

and it is explicitly local
. The map I is extremely useful:

. For gapped systems: Proof of the adiabatic theorem [B-De
Roeck-Fraas 2018, Monaco-Teufel 2019]

. For perturbation closing the gap: Construction of non-equilibrium
steady state (NEASS) [Teufel 2019,...]

. In both settings: Validity of linear response
. Variations on the theme yield exponential clustering for gapped

systems: [Hastings-Koma 2006, Nachtergaele-Sims 2006, B-Bols-De
Roeck-Fraas 2021]

|〈ψ,ABψ〉 − 〈ψ,APBψ〉| ≤ C(A,B)f(r) ψ = Pψ

where f ∈ F and r is the distance between the supports of A,B
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What is a quantum phase?

. Proving that τt is gapped is notoriously difficult, so:

. Definition. Two pure states ω, ν are equivalent if

ν = ω ◦ α1

where αs is an LGA
. (Gapped ground state phases) are equivalence classes of states

In other words: Connected components of the state space
. Short Range Entangled states: equivalence class of the product states
ω0 is a product state if

ω0(AXBY ) = ω0(AX)ω0(BY ) X ∩ Y = ∅
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Stabilization

. Make definition independent of the ‘ambient space’:
Definition. Two pure states ω1, ω2 on algebras A1,A2 are stably
equivalent if there are product states ν1, ν2 on algebras A′1,A′2 such
that

ω1 ⊗ ν1 ∼ ω2 ⊗ ν2

on A1 ⊗A′1 ' A2 ⊗A′2.
Notation: ω1

s∼ ω2

. A state is stably SRE if it is stably equivalent to a product state.

Remark: The set of stable equivalence classes is a monoid, with the class of
the product state ω0 being the identity
Natural question: Are there ‘invertible elements’?

. Definition. A state ω is invertible if there is a state ω̄ such that

ω ⊗ ω̄ ∼ ω0
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Free fermions

Back to the CAR algebra A(H)

A pure gauge invariant quasi-free state on A(H) is defined by

ωP (a∗(fn) . . . a∗(f1)a(g1) . . . a(gm)) = δn,mdet
(
〈gi, Pfj〉ni,j=1

)
,

where P = P ∗ = P 2 (physically: the Fermi projection)
Since A(H1 ⊕H2) = A(H1) ∧ A(H2), we have the stacking property

ωP1 ⊗ ωP2 = ωP1⊕P2

Proposition. [B-Bols-Rahnama 2024]
If P is translation invariant, then σH(P ) = 0 implies ωP is stably SRE.
Furthermore: Any quasi-free state is invertible and σH(P ) ∈ Z, see
[Kapustin-Sopenko 2020]
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Some questions

. Stably SRE states are trivial. Role of local symmetries?
 Symmetry Protected Topological (SPT) phases

. Difference between stably SRE and invertible?

. Classification of non-invertible phases?

. Construction of indices of gapped phases?

. Higher ‘homotopy groups’, classification of cycles?

Also:

. Relationship to TQFTs?

. Proof of gaps?
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Part III.
Some results on quantum Hall
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Overview of existing rigorous results

For lattice systems:

. One dimension: Classification of SPT phases

. One dimension: Classification of SPT pumps

. One dimension: Parametrized phases without symmetry

. Two dimensions: Quantization of Hall conductance

. Two dimensions: Solvable models of intrinsic topological orders

. Superselection sectors, anyons and the quantum Hall effect

. Generalizations of ‘Hall conductance’ for general groups and
dimensions

. ...
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Charge conserving Hamiltonian

Finite setting: A discrete torus Λ = (Z/LZ)2

Finite-range Hamiltonian

HΛ =
∑
X⊂Λ

Φ(X) in A(l2(Λ))

with
Φ(X) = Φ(X)† Φ(X) = 0 if diam(X) > R

Assumption: Charge conservation (U(1)-symmetry)

[Φ(X), QΛ] = 0 QΛ =
∑
x∈Λ

a∗xax

Example

H =
∑

d(x,y)=1

(
t(x, y)(a∗xay + a∗yax) + U(x, y)qxqy

)
+
∑
x

V (x)qx
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Gapped ground state space

Spectral assumptions: uniformly in volume |Λ|
. Spectral gap: E1 − E0 ≥ g > 0, where E0 is the ground state energy
. Rank(P ) = p, where P is the ground state projection

Invariant subspace: [QΛ, H] = 0 implies

QΛP = PQΛP

But not for any Z ( Λ: charge fluctuations across ∂Z.
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Charge fluctuations
Charge conservation implies

supp([H,QZ ]) supported along ∂Z

Then,
. K∂Z = I([H,QZ ]) ∈ Aaloc(∂Z)

. K∂Z describes charge fluctuations: if
QZ = Q−K∂Z , then

[QZ , P ] = 0 namely QZP = PQZP

Z

∂Z

Loop operators:

e−2πiQZ = e−2πi(Q∂Z−K∂Z)e−2πi(QZ−Q∂Z)

= e−2πi(Q∂Z−K∂Z) ∈ Aaloc(∂Z)

since Spec(QZ −Q∂Z) ⊂ Z.
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Loops and boundaries

e−2πiQZP = P e−2πiQZP

Now Λ is the torus, and Q = QΛ

V = e−2πiQ = e−2πiQ−e−2πiQ+ = V−V+

Gap assumption implies exponential clustering:

PV−V+P = PV−PV+P

V± are ‘Wilson loops’:

[P, V±] = 0

but [P,Q−] 6= 0.
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Importantly ∂− ∪ ∂+ = ∂Γ, but ∂− is not a boundary
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Loops and boundaries

Assume topological order
PQZP ∝ P

then

. If α is a boundary

VαP = P e2πiQZP = e2πiPQZP ∝ P

Vα acts trivially on RanP

. If γ is not a boundary,
Vγ is a nontrivial unitary on RanP
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Algebra of loops

Theorem. [B -Bols-De Roeck-Fraas 2020]
For any gapped system with a U(1) charge and
a topologically ordered ground state space,

V ∗` V−V`V
∗
−P = e

2πi q
pP

where q ∈ Z and p = Rank(P ).

Rational rotation algebra
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Proof by analyzing

λ 7→ det
((

eiλ(V ∗` QV`)−e−iλQ−
)
P
)
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Fractionalization & braiding
For an open path γ

ϕ = VγΩ (Ω = PΩ)

is a state of a pair of excitations
Independent on γ since

VγV−γ′Ω = Vγ−γ′Ω = Ω

whenever γ, γ′ have the same endpoints

γ

α

R

∂R

ǫ

-ǫ

. Fractional charge (Laughlin, Saminadayar, Reznikov,...)

〈ϕ,QRϕ〉 − 〈Ω, QRΩ〉 = 〈Ω, (V ∗γ QRVγ −QR)Ω〉 =
q

p

. Braiding, anyons (..., Wen, Fröhlich-Kerler,...)

Vαϕ = Vγ(V ∗γ VαVγV
∗
α )Ω = e

2πi q
pϕ
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Quantized transport

More can be said:

d

dλ
eiλ(V ∗` QV`)−e−iλQ−P

∣∣∣
λ=0

= Tr((V ∗` QV` −Q)−P )

= Tr((V ∗` QV` −Q)−P )

and (V ∗` QV` −Q)− is the operator of charge transported across the
fiducial line ∂−.
The theorem shows quantized charge transport:

p−1Tr((V ∗` QV` −Q)−P ) =
q

p
∈ Q

Note V` is finite volume, many-body analog of U = z
|z|
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Abelian anyons
. Configuration space of N point particles on

manifoldM

ΓN =MN \ {xi = xj , 1 ≤ i 6= j ≤ N}

Non-trivial topology in low dimensions
. Quantum mechanical pure state:

one-dimensional projector

Pψ = P ∗ψ = P 2
ψ ψ ∈ L2(ΓN )

Of course:

Peiθψ = Pψ for all θ ∈ [0, 2π]

b

b

b

b

b

b

b

b

b

xi

xj

M

. As particles move around: Path s 7→ γs ∈ ΓN and corresponding

s 7−→ Ps = Pψs
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Loops in configuration space

If γ is a loop
γ0 = γ1

then
Pψ0 = Pψ1

Holonomy
ψ1 = eiηγψ0 ηγ ∈ [0, 2π)

and ηγ depends only on the homotopy class of γ.
Typical non-trivial loop in 2d
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Anyons and the braid group

We have a one-dimensional representation

η : π1(ΓN )→ U(1) γ 7→ ηγ

In this context: π1(ΓN ) is called the coloured braid group
Anyons carry a non-trivial representation

. Theoretical possibility:
Leinaas-Myrheim 1977, Goldin-Menikoff-Sharp 1981, Wilczek 1982

. Concrete wavefunctions (quantum Hall effect):
Laughlin 1988

. Specific lattice models:
Kitaev 2003, Lewin-Wen 2005

Today: General and explicit construction of anyonic quasi-particles
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Finite volume: Summary

Assumptions:

. Uniform spectral gap

. Finite ground state degeneracy p

. Local topological order

Consequences:

. ‘Flux insertion’ cycles through ground states

. σH is well-defined and σH = p
q

. Quasi-particle excitations are anyons
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Infinite volume

. Setting for QHE, anyons, in infinite volume?

. What replaces spectral gap, ground state degeneracy and topological
order?

 Superselection sectors
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Superselection sectors: idea

Goal: to classify ‘particle states’

. To be defined with respect to a reference vacuum state

. Up to unitary equivalence

. The particle is localized

Examples:

. Gauss’ law in electrodynamics: The presence of a charge can be
detected at infinity

. The anyons of QHE: An infinite string γ in VγΩ can be detected at
infinity

See

. QFT fundamentals: Doplicher-Haag-Robert 1971 and
Buchholz-Fredenhagen 1982

. Non-relativistic lattice systems: Naaijkens 2011, Ogata 2022,...
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DHR criterion

. Pick a representation π0 is A
Concretely: the GNS of a ground state ω0

. Classify representations π that satisfy the superselection criterion:

∀ cone Λ : π � AΛc ' π0 � AΛc

b

Λ

. The particle is localized at the apex, the string is not observable

. The particle can be moved by the action of a local observable (in
π(A)), not removed
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Example of toric code

Recall
H =

∑
v:vertex

(1−Av) +
∑
f :face

(1−Bf )

where
Av =

∏
x∈v

σ1
x, Bf =

∏
x∈f

σ3
x

Since
[Av, Bf ] = 0

so finite volume ground states characterized by

AvΩ = 0 BfΩ = 0 for all v, f

Elementary excitations:

VγΩ, Vγ =
∏
x∈γ

σ1
x
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Example of toric code

Theorem. [Alicki-Fannes-Horodecki 2007, Fiedler-Naaijkens 2015]
On Z2, there is a unique gapped ground state ω0 which is frustration-free,
namely

ω0(Av) = ω0(Bf ) = 1

For γ extending to infinity and γn its truncation to the first n sites, define

ργ(A) = lim
n→∞

V ∗γ AVγ

Proposition. The representations

π0 ◦ ργ

satisfy the superselection criterion.
In fact, they are the GNS reps of the algebraic ground states ω0 ◦ ργ
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Sketch of proof
. For α = ∂X,

Vα =
∏
v∈X

Av

hence
π0(Vα)Ω = Ω

 ω0 ◦ ργ depends only on γ only through
initial point

. Transporters:
. Move initial point x→ y by π0(

∏
x∈µ σ

1
x)

. Move infinite string by

Vγ→γ′ = w− lim
n→∞

π0

( ∏
x∈σn

Vσn

)

The limit exists and is unitary

. Vγ∗

b

b

σn

n → ∞

α

x

yb
µ

γ

γ ′
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Sketch of proof

Let ργ be given.
Pick a cone Λ′ and a path γ′ ∈ Λ′:

Vγ→γ′
(
π0 ◦ ργ

)
V ∗γ→γ′ = π0 ◦ ργ′

and because γ′ ∈ Λ′

ργ′ � AΛ′c = id � AΛ′c

hence
π0 ◦ ργ � AΛc ' π0 � AΛc

Meaning of superselection criterion:
The particle and its string can be hidden in any cone

b

γ ′

b

γ

Λ′

Λ

Vγ→γ′

Construction generalized to Kitaev’s ‘quantum double models’
[Bols-Vadnerkar 2024]
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Back to QHE

Γ ⊂ Z2: Upper half plane

βΓ
φ (A) = lim

Λ→Γ
eiφQ̄ΛAe−iφQ̄Λ Q̄Λ = QΛ −KΛ

Since KΛ ∈ Aaloc(∂Λ) and Spec(QΛ) ⊂ N,

βΓ
2π(A) = τ k̃2π(A)

where k̃ is a 0 chain that is supported along the line ∂Λ

Define

ρ = τ
k̃+

2π

where (k̃+)x = k̃+χx1>0
b

Γ

k̃+
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Exercise: Construct k̃

Since τ q
Γ

2π = id,

βΓ
2π = βΓ

2π ◦ (τ q
Γ

2π )−1 = id +

∫ 2π

0
∂φ

(
βΓ
φ ◦ (τ q

Γ

φ )−1
)
dφ.

Now
∂φ

(
βΓ
φ ◦ (τ q

Γ

φ )−1
)

= βΓ
φ ◦
(
δq̄Γ − δqΓ

)
◦ (τ q

Γ

φ )−1.

With q̄Γ − qΓ = −kΓ:

∂φ

(
βΓ
φ ◦ (τ q

Γ

φ )−1
)

= −
(
βΓ
φ ◦ (τ q

Γ

φ )−1
)
◦ τ qΓ

φ ◦ δkΓ ◦ (τ q
Γ

φ )−1,

so we pick
k̃(φ) = −τ qΓ

φ (kΓ)
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QHE superselection sectors

. Start with QH Hamiltonian δ and assume the existence of gapped
ground state ω

ω(A∗δ(A))

ω(A∗A)
≥ g > 0 ω(A) = 0

. Lemma. πω ◦ ρ satisfies the superselection criterion

. Also: One can define θ(ρ) ∈ U(1) corresponding physically to the
braiding holonomy
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QHE

Theorem. [B-Corbelli-Fraas-Ogata 2024]

. θ(ρ) = e−i(2π)2σH

. If there are p equivalence classes of representations satisfying the
superselection criterion, then

2πσH =
q

p′

for some p′ ≤ p.

See also Kapustin-Sopenko 2020
In a TQFT setting: Fröhlich-Kerler 1991, Fröhlich-Studer 1993,...
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Concluding summary

. IQHE well understood, non-interacting fermions

. FQHE mathematically poorly understood, but progress

. More general question: ‘topological’ phases and their classification

. σH is a ‘topological invariant’;
other ‘topological indices’ & their physical meaning

. Emergence of anyons, fractional charges

We also broke with tradition in that the colored Hofstadter butterfly is rotated by 90°: In Fig.
1 the horizontal axis is ! and the vertical axis is the energy, or S(H(!)). The reason we chose to
do so is that this way emphasizes the fact that phase boundaries are functions "of !#.

We denote by P(k) the kth phase. Formally,

P"k #!$! ,%!!k!&"! ,%#mod 1,%!S"H"!##'. "11#

P(k) is an open set in the "!,%# plane, with a finite number of components. For example, P(1) is
two of the four big wings of the butterfly. We call P(k) a pure phase and denote its number of
components !P(k)!. The closure of the pure phase is denoted P̄(k) and the phase boundary is
(P(k). We call !k(P(k) the total boundary.

III. COUNTING COMPONENTS

The kth pure phase is made of several components. The k!0 phase "blank# has two compo-
nents. For k)0 the number of components is

!P"k #!!*
j!1

2!k!

+" j #!12
k2

,2 "O"k log k #, "12#

where +( j) is Euler "totient# function. Recall that +( j) counts the number of integers, up to j "and
including 1#, that are prime to j : +(1)!1,+(2)!1,+(3)!2 etc.

To prove Eq. "12# note first that from Eq. "9#

k"& ,!#!k"&!,!#⇒&!&!. "13#

Hence, a given color would appear at most once on any vertical line of fixed !.

FIG. 1. "Color.# Hofstadter colored butterfly.
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