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Heavy nuclei (?) in astrophysical environments 
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• Def: a heavy nucleus (HN) has A>56 
• Heavy nuclei are synthesized due to the r-processes inside neutron-rich environments (compact binary 

mergers, including binary neutron star and neutron-star–black-hole mergers; collapsars including 
GRBs supernovae).  

• To be considered as UHECRs they have to: 
• Be accelerated (advantage: large Z) 
• Escape 
• Propagate through extragalactic space 

• Considering the highest-energy UHECR events, the heavier is the (assumed) nuclear species, the 
more distant can be its source  
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PHOTO-DISINTEGRATION
• Regimes 

• Giant Dipole Resonance (GDR): protons and 
neutrons can be considered as penetrating 
fluids; absorption of photons determines 
vibrations; ejection of one/two nucleons is 
dominant 

• Quasi-Deuteron (QD), 20-150 MeV: the photon 
wavelength becomes comparable with the 
nuclear dimensions; photon interacts with 
nucleon pair; ejection of pair + possibly other 
nucleons 

• Conservation of Lorentz factor 
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• I will mainly consider the GDR in the following



PHYSICS OF PHOTODISINTEGRATION
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Typical GDR energy: mainly connected to the volume term in the SMF EGDR ≈ 60 MeV A−1/3

A more refined model describes how protons an neutrons vibrate 
as incompressible fluids bound together by a flexible surface

EGDR ∝ A−1/6

From fits of available data on GDR maximum energies 
EGDR(A) = ̂EGDRA−1/6, ̂EGDR = 35.3 MeV

ΓGDR(A) = Γ̂GDRA−1/6, Γ̂GDR = 15.1 MeV

• The photoabsorption cross section of the GDR is assumed to have a Lorentzian shape  
• For the normalization,  

• the integrated cross section is used  
• the one-nucleon emission is assumed as the main disintegration process 
• Parametrization from available data

Σ = 1.38 σ0 ΓGDR

σ0(A) = ̂σ0A7/6, ̂σ0 = 0.72 mbarn
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CROSS SECTIONS
Models taken from: 

TENDL is a nuclear data library which provides the output of the TALYS nuclear model code system 
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CROSS SECTIONS

Absorption cross section; can be obtained: 
• From the inclusive cross section 

(production cross section) 
• From the partial cross section 

σj =
σincl,j→i

Mj→i

Fe(g, X)p, Fe + γ → X + npp

Example (for the case of Fe): 

• Production cross section of protons: every time a proton 
is produced together with X in the final state 

• Partial cross section: every time in which one proton is 
produced together with X in the final state

Fe(g, X), Fe + γ → X + p
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CROSS SECTIONS
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One-nucleon emission dominates the GDR: 
• Low threshold 
• Highest contribution to cross section at maximum
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CROSS SECTIONS

Eth =
mn,pAΔB

2ε
Γth =

ΔB
2ε

• The threshold only depends on the difference of the binding energy for the 
emission of one proton or one neutron 

• Weak dependence on A (the difference of the binding energy is O(MeV)

A + γ → (A − 1) + (n, p)

ε′￼ = εΓ(1 − cos θ)
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ENERGY THRESHOLD
ε′￼ = Γϵ

ELL =
1

σabsA n
• Estimate of energy loss length 
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• The highest energy events are cosmic rays which mainly 
interacted with the EBL
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ENERGY LOSS LENGTH

• At the minimum, the ELL are similar to each other  

• The increase in the maximum of the cross section is 
roughly compensated by the multiplicity 

• If the ELL as a function of the Lorentz factor is taken into 
account,  

• The rapid decrease of the ELL has similar behaviours for 
each nucleus, due to the weak dependence of the 
threshold on the mass
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•  At a fixed energy, the ELL increases with A 

• A larger portion of the Universe is available if nuclei with large A are considered 

Zhang et al, arxiv:2405.17409v1
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WHAT CAN WE LEARN FROM THE HIGHEST ENERGY 
EVENTS?

• Inspired by the TA paper on the Amaterasu particle; similar to what presented already in Unger&Farrar  ApJL 2024, 
GAP2024_011, but it is extended to the 100 highest-energy events. 

• Take into account the highest-energy events 

• Identify the maximum distance of the possible source responsible for the cosmic-ray particle 

• Assigning a nuclear species to the detected event; 

• Taking into account the effect of extragalactic propagation; 

• Taking into account the effect of the Galactic magnetic field 

• Assign a weight based on propagation effects and on the assumed nuclear species at Earth, to those backtracked events (at the 
border of the Galaxy) which are found within a chosen angular distance from a source 

• Reject or accept sources based on the assigned weight   
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Backtracking of the highest-energy events

• Catalog (sources indicated as red dots; the size of the dots depends on the distance of the source): Swift-BAT 70-month 
catalog of AGNs, as used in the AD paper of Phase1

A=1• CRPropa is used for the backtracking with JF12 (Jansson & Farrar ApJ 2012) model for the 
Galactic magnetic field (note that here and in the following plots, only the regular component is 
taken into account), including the uncertainty in energy
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Association of the highest-energy events to source positions

• Case for protons: search for sources within chosen angular distances with respect to the backtracked event (in this case, no 
uncertainty in the energy is used)

A=1
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Examples
• Assign a nuclear species 

• Compute the maximum distance 

• Backtrack the arrival direction 

• Check the sources within some angular distances 

• Check if the source distance is larger than the maximum distance 
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Examples

• If iron is taken into account, two 
sources are found within 10 degrees 
AND within the maximum distance 
of the event

• If heavier nuclei are taken into account, their maximum distance can be larger and more sources can be considered
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HEAVY NUCLEI IN SIMPROP
•  With the current technology of SimProp, using model 4 for 

the disintegration would allow to include also heavy nuclei, if 
the corresponding parameters are collected 

• See https://arxiv.org/pdf/1804.04445  

• See SimProp documentation

•  First step: 

• Collect parameters 

• Second step: 

• Compute cross section in nucleons and in alpha

https://arxiv.org/pdf/1804.04445
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HEAVY NUCLEI IN SIMPROP
To-do list - open issues (not ordered)

• List of stable nuclei with A>56 
• Estimate of interaction length of heavy nuclei in dense regions 
• Check the beta-decay time  
• Collection of parameters for emission of one nucleon and alpha  


