

UNIVERSITÀ DELLA CALABRIA

IONOSPHERIC RESPONSE TO MT.ETNA ERUPTION

Federico Ferrara (UniTN – federico.ferrara@unitn.it) Alessandro Bonforte (INGV – OE) Michela Ravanelli (La Sapienza) Vincenzo Carbone (UniCal) Vincenzo Capparelli (UniCal)

PhD SST Space Science and Technology

270

INTRODUCTIO

/olcanic eruptions can cause Acoustic – Gravity waves (AGWs) propagation in the atmosphere. AGWs can reach the upper atmosphere by triggering Total Electron Content (TEC) oscillations in ionosphere. TEC signatures of volcanic source are called Co-Volcanic lor

Disturbances (CVIDs). The ionospheric detection of volcanic eruptions involves the study of atmospheric dynamics and volcanic plumes. The Lithosphere – Atmosphere – Ionosphere Coupling (LAIC) is the main approach to study the energy exchange between Solid Earth and luid Earth.

METHOD (GNSS – TEC analysis)

The single time differences between the geometry-free combinations of Global Navigation Satellite System (GNSS) carrier measurements provide TEC estimation in terms of TEC Unit (1 TECU = 1.10⁶ e⁻.m²). Variometric Approach for Real-time **Ionosphere Observation** (VARION) is the algorithm (not the one) to estimate TEC values based on ionospheric-shell model. Fast Fourier Transform (FFT) and Empirical Mode Decomposition (EMD) are some techniques to analyze waveforms and spectral features of TEC signatures.

RESULTS

GNSS – TEC analysis of 2012/04/12 and 2015/12/04 lava fountains of Mt.Etna provides N-shape TEC signatures in time ranges related to the eruptive activity.

Main features of TEC signatures detected are:

- Apparent horizontal velocity $v_{HA} \sim 170 220 \text{ m} \cdot \text{s}^{-1}$
- Frequency $f \sim 0.5 1.5$ mHz (FFT & EMD outputs)

- Wavelength $\lambda \sim 40 80$ km
- TEC amplitude A ~ 0.3 0.5 TECU

CONCLUSIONS

- Ionospheric disturbances in gravity mode
- Near field TEC signatures (up to about 200 km from Mt.Etna)
- TEC detection in geomagnetic quiet days (Dst \sim 10 nT)

OVERVIEWS

- Estimation of the "eruptive column pulse" in the atmosphere
- Ray tracing of gravity waves
- Research on termodynamic and electromagnetic coupling
- between neutral atmosphere and ionosphere

OPEN QUESTIONS

- How to relate TEC signatures with the eruptive column uprising?
- Why so different picking times?

Date	Seismo-	Seismo-	RMS_seismic (m·s⁻¹)	RMS_ infrasound (Pa)	Fountain	Plume height	Total seismic	Total acoustic	Total thermal	Mass Eruption
	acoustic	acoustic			height (m)	asl (km)	energy (J)	energy (J)	energy (J)	Rate (kg·s ⁻¹)
	start (UTC)	end (UTC)								

