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▪ Objects maneuvering with very low thrust
▪ LEO to GEO transfer mission 
▪ Upcoming satellite missions with electric propulsion
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Fig. 3 Multi-static scenario utilizing one transmitter and 
three receivers
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❑ UKF is an advanced state estimation technique for non-linear systems
❑ Provides more accurate orbit determination by effectively managing non-linearities
❑ More reliable under high noise and uncertainty compared to traditional filters

Covariance  Position Trace (3 σ) 
• Shows error estimation and 

higher confidence in state 
estimate
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This study presents a cost-effective solution for real-time satellite 
tracking using combinations of radar and existing radio telescopes when 
spacecraft performs maneuver. By employing an Unscented Kalman 
Filter (UKF) to estimate state vectors, the integration of multi-static 
radar and tangential thrust improves spacecraft positioning and 
trajectory predictions. The system demonstrates significant accuracy 
enhancements, reducing errors in Keplerian parameters and improving 
Root Mean Square Error (RMSE) in position and velocity estimation.

Motivation

Fig. 4 Ground track of spacecraft when passing 
through considered sensors 

Here we have considered combination of 
existing radars and radio telescopes from Italy.

Fig. 5  Observations from the MEDICINA sensor  (a) Range (b) Radial velocity (c) Skyplot (Azimuth and Elevation)
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RMSE 
Error 122.9 934.14 785.21 2.23 9.22 7.78

Table 2-RMSE In position and velocity for IOD

Fig. 6  Satellite & 
sensor position in ECI 

coordinate system 
system

IOD with Mixed observations- Range and Range Rate

Absolute Error( %)

Semi-Major axis (m) 0.0056

Eccentricity 5.1714

Inclination (°)  0.0012

RAAN (°) 0.0014

Arg periapsis (°) 0.2439

True Anomaly (°) 0.2425

By integrating maneuver detection capabilities into orbit 
determination routines, the system can adapt to changes 
in propulsion and provide more precise orbital 
calculations in real-time. This advancement will  
ultimately contribute to space missions’ overall success 
and safety by ensuring that spacecrafts remain on their 
intended path.

▪ More rigorous simulations, including perturbations 
▪ Improvement in Initial orbit Determination with 

multiple radars
▪ Use of azimuth and elevation data from tracking 

radars
▪ Propagation of state vectors to the next sensor
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Total Measurement time– 5 s
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Fig. 2 Trajectory in ECI system with
 Propagation Time – 24 Hours, athrust ~ 9 mm/s2

Allow us to 
Calculate

 maneuver
 directly

Solving differential Equation with 
Runge-kutta Method

Fig. 1  Flow chart of simulation process

Semi-Major 
axis (m) Eccentricity Inclination (°) RAAN (°) Arg periapsis 

(°)
True Anomaly 

(°)
Initial 

Parameters 8369506.747 0.0012 51.934 152.428 353.704 2.703

Table 1- Initial Keplerian parameters of spacecraft 
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