Analysis of Ganymede's gravitational field in support of JUICE mission

Edoardo Santero Mormile^{1,2,3}, Giuseppe Mitri^{2,3}

UGA Inversità degl' Studi 'G. d'Annunzio*

ID: 256

Università degli Studi di Trento, Trento, Italy
 Dipartimento di Ingegneria e Geologia, Università d'Annunzio, Pescara, Italy
 International Research School of Planetary Sciences, Pescara, Italy

INTRODUCTION

In the absence of seismic data, the gravity field allows to investigate the internal distribution of mass of a planetary object. The upcoming missions **JUICE** (ESA), **BepiColombo** (ESA-JAXA) and **Veritas** (NASA) will measure the gravitational fields of **Ganymede**, **Mercury**, and **Venus**, respectively, to **constrain their interiors**. In this work, we provide the starting steps for the analysis of Ganymede's gravitational field (in the frame of JUICE mission), using other planetary bodies as benchmarks.

GOALS

- Assessing the actual state of the art of the planetary interior inference;
- Developing a **novel code** (MATLAB) to handle and process the gravity data from space missions (spherical harmonics expansion);
- Evaluating the gravitational anomalies maps and the admittance spectrum;
- Starting to analyse these results to catch hints of the body's internal structure.

10 C L L L	Planet	Gravity model	Topography model	n _{max}	km/pxl
No. of Street, of Street, or Stre	Mercury	HgM009 (Genova, 2015)	gtmes_150v05 (Neumann et al., 2016)	150	51,1
New Road	Earth	XGM2019e_2019 (Zingerle et al., 2019)	Earth2014_10800 (Curtin University, WAGG, 2014)	2190	9,1
V. WARD	Venus	MGNP180U (Konopliv et al.,1999)	VenusTopo719 (Wieczorek, 2015)	180	105,6
14 - 17 M	Moon	GRGM1200C (Goosens et al, 2016)	MoonTopo2600p (LRO LOLA Team, NASA, 2024)	1200	4,6
No.	22.0	All and the second file			

RESULTS

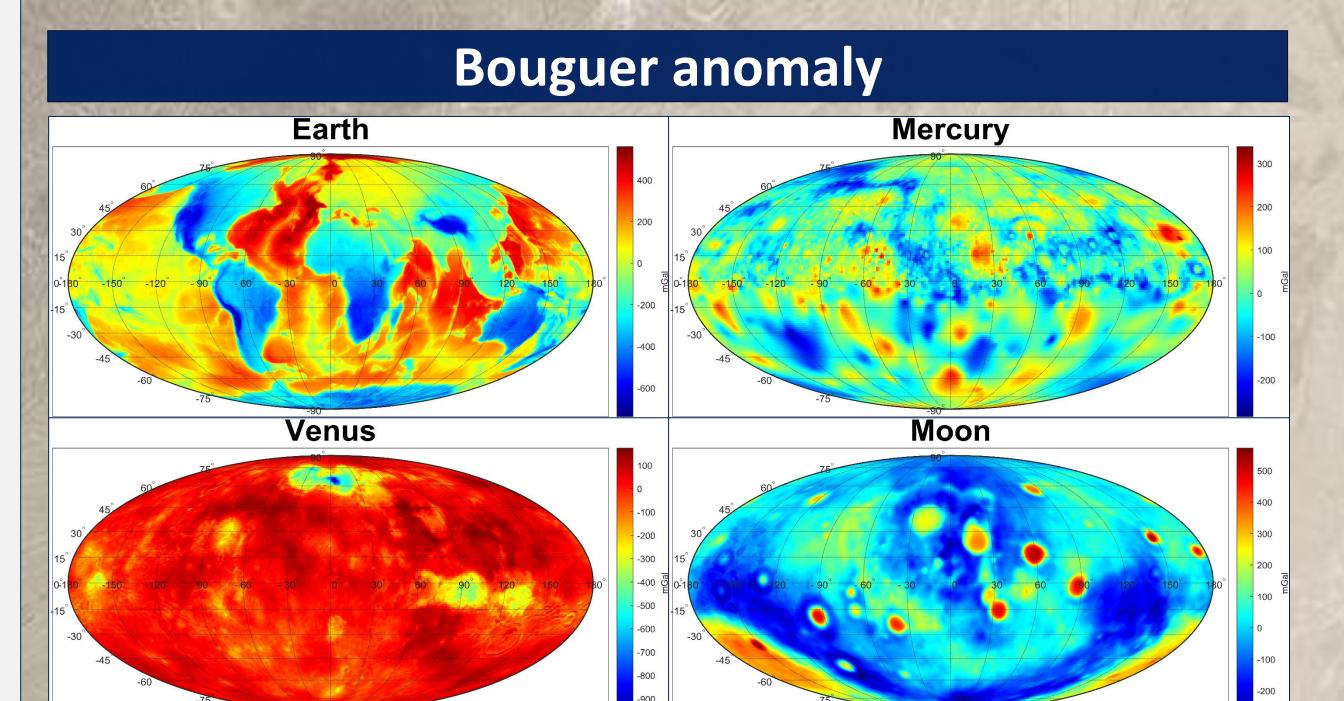
The code was tested on Mercury, Earth, Venus and Moon, calculating the gravitational maps of the field and anomalies, along with the correspondent admittance spectrum. The so-obtained resulting maps are consistent with those reported in the literature, validating both the code and the performed analysis.

METHODOLOGY

The gravitational field of a body can be measured using a **spherical harmonic expansion** approach [1], exploiting the associated Legendre polynomials P_{nm} . In this case, the gravity data are in the form of "Stokes coefficients" $[C_{nm}, S_{nm}]$. This subdivision in **degree** n (and order m) allows a study of direct correlations between the maximum expansion degree n_{max} , the resolution of the models ($\approx \pi R/n_{max}$) and the depths of the subsurface structure: lower n, the deeper the source (and vice versa) [1].

$$oldsymbol{U}(oldsymbol{r},oldsymbol{ heta},oldsymbol{\phi}) = -rac{GM}{r} igg\{1 + \sum_{n=2}^{n_{ ext{max}}}igg(rac{R}{r}igg)^n\sum_{m=0}^nigg(\overline{ ext{C}}_{nm}\cos m\phi + \overline{ ext{S}}_{nm}\sin m\phiigg)\overline{ ext{P}}_{nm}(\cos heta)igg\}$$

•[θ , ϕ] = colatitude, longitude;


• \overline{C}_{nm} , \overline{S}_{nm} , \overline{P}_{nm} = 2-pi normalized.

Even the topography of the body can be expressed in spherical harmonics terms, allowing us to **compare and combine the gravitational effects with the planetary shape**. Notice that the n_{max} needs to be matched between gravity and topography models.

$$oldsymbol{h}(oldsymbol{ heta},oldsymbol{\phi}) = \sum_{n=0}^{n_{ ext{max}}} \sum_{m=0}^n \Bigl(\overline{ ext{C}}_{nm}^t \cos m \phi + \overline{ ext{S}}_{nm}^t \sin m \phi \Bigr) \overline{ ext{P}}_{nm}(\cos heta)$$

The code is able to handle any gravity data, resulting **numerically stable** up to the highest tested degree (i.e., 2190 for the Earth model).

The analysed data are reported in the table, including the gravity and topography models, the correspondent maximum available expansion degree n_{max} and the resulting global resolution ([km/pxl]).

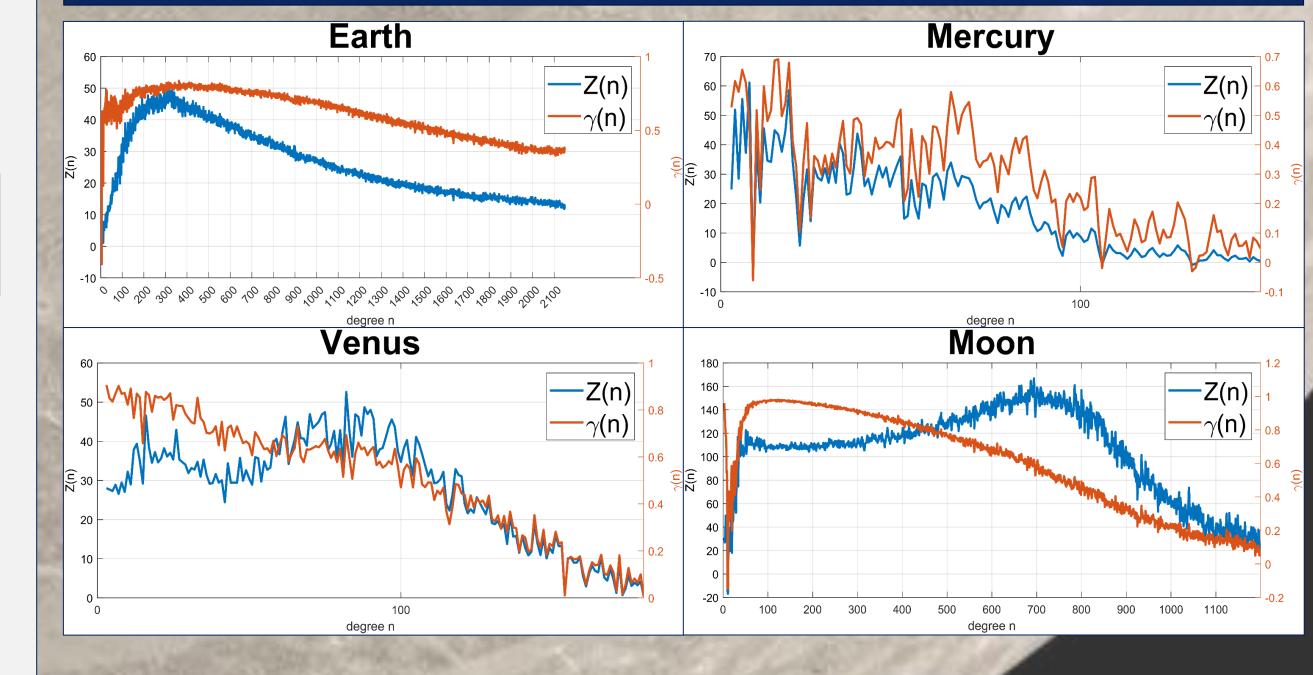
This results in two quantities to constrain the interiors: from the gravitational acceleration (i.e., Free-Air anomaly) the topography contribution can be subtracted, via **Bouguer correction**, while from the gravity spectrum, it is possible to analyse the **admittance** *Z*(*n*). In the following, the resulting equations:

• Free-Air anomaly (= $\partial U/\partial r$):

$$egin{aligned} rac{dU}{dr} &= rac{GM}{r^2} iggl\{ 1 + \sum_{n=2}^{n_{ ext{max}}} iggl(rac{R}{r}iggr)^n (n+1) \sum_{m=0}^n iggl(\overline{ ext{C}}_{nm}\cos m\phi + ar{ ext{s}}_{nm}\sin m\phiiggr)\overline{ ext{P}}_{nm}(\cos heta) iggr\} \end{aligned}$$

Bouguer correction [2]:

$$igg\{ egin{smallmatrix} m{C}_{nm}^{m{T}} \ m{S}_{nm}^{T} \ m{S}_{nm$$


• Admittance [3]:

$$Z(n) = \sum_{m=0}^n \left(rac{\overline{ ext{C}}_{nm}^g \overline{ ext{C}}_{nm}^t + \overline{ ext{S}}_{nm}^g \overline{ ext{S}}_{nm}^t}{\overline{ ext{C}}_{nm}^{t-2} + \overline{ ext{S}}_{nm}^{t-2}}
ight) \left[rac{\overline{ ext{GM}}}{10^{-8}}
ight]$$

REFERENCES

[1] Kaula, Determination of the Earth's gravitational field, 1963

Admittance Z(n) and correlation factor y(n)

FUTURE WORKS

- Enhancing the admittance *Z*(*n*) and spectrum analyses through the application of a new mathematical tool, called *Spherical Iterative Filtering*.
- Synthetic gravitational field generation: building an artificial planetary body with known interfaces (depth and topography) and generating its gravitational field.

[2] Wieczorek and Phillips, *Potential anomalies on a sphere*, 1998

[3] Wieczorek, Gravity and Topography of the Terrestrial Planets, 2015

• Development of inversion methods.