Laboratory Performance Analysis of a 5G NTN K/Ka band link for LEO SATCOM

5G Non-Terrestrial Networks (NTN) offer the potential to connect regions previously inaccessible or economically unviable for traditional terrestrial communication networks. K/Ka band satellite communications can achieve higher channel capacity compared to satellite services operating at lower frequency bands. This study examines the laboratory validation of a satellite link as part of the ESA ARTES Project 'Demonstration of direct 5 G broadband access from LEO to small satellite terminals'. The testing setup incorporates two channel emulators to simulate real-world conditions, including link attenuation, LEO satellite Doppler effects, and latency. The objective of the project is to develop and validate a communication experiment demonstrating direct 5 G broadband access from Low Earth Orbit (LEO) to very small aperture mobile terminals. The proposed communication architecture comprises a commercial Amarisoft software radio-stack and Ettus B200 SDR to generate a 5G FR1 signal, subsequently converted to K/Ka band using Block Up Converters (BUC) and Block Down Converters (BDC). Two transparent transceivers integrated aboard a LEO satellite are used in the bi-directional bent-pipe satellite link. The presented results will detail the throughput performance of the validated satellite link, providing crucial insights into the feasibility and efficacy of K / Ka band 5 G in satellite communications, thus paving the way for enhanced connectivity solutions.

Primary authors: ADAMO, Francesco (Università di Trento); PAULETTO, Simone (Università di Trieste); PERTICAROLI, Stefano (R.A.M.E., Radio Analog Micro Electronics, Rome, Italy)

Co-authors: CHEIKH, Abdallah (R.A.M.E., Radio Analog Micro Electronics, Rome, Italy); JAMILI, Saeid (R.A.M.E., Radio Analog Micro Electronics, Rome, Italy); ZANCHETTA, Fabio (PICOSATS srl, Trieste, Italy); CARRATO, Sergio (Università di Trieste); GREGORIO, Anna (PICOSATS srl, Trieste, Italy)

