Abstract ID 245

Laboratory Performance Analysis of a 5G NTN K/Ka band link for LEO SATCOM

F. Adamo^{1,2,3}, S. Pauletto^{2,3}, S. Perticaroli⁴, A. Cheich⁴, S. Jamili⁴, F. Zanchetta³, S. Carrato² and A. Gregorio³

- University of Trento, Trento, Italy 1)
- 2) University of Trieste, Trieste, Italy

- **PICOSATS srl, Trieste, Italy** 3)
- Rame srl, Radio Analog Micro Electronic, Roma, Italy 4)

INTRODUCTION

- 5G Non-Terrestrial Networks (NTN) can offer global coverage [1].
- Current project is part of the ESA ARTES demonstrative mission: 'Demonstration of direct 5G broadband access from LEO to small satellite terminals'.
- 5G connection between a UE (User Equipment) and a GW (Gateway) integrating a **gNB** (gNodeB) that provides access to the core network.
- Satellite link in K/Ka band through bent-pipe transponders [2].

BUC: Block Up Converter

K/Ka BAND TRANSPONDER

Frequencies RX 27 – 30 GHz TX 17 - 20 GHz

- Two transponders integrated on-board a LEO satellite.
- Carrier Frequency Offset (CFO) mitigated by high precision TCXO (Temperature Compensated Crystal Oscillator) and payload reference synchronization with a **SYNC** Cable.

CFO COMPENSATION

- CFO and Doppler shift measurement from GW terminal with a **beacon signal**.
- An effective CFO compensation, through BUC/BDC, is possible thanks to payload reference synchronization.

Frequency

TEST CAMPAIGN

- Laboratory test platform for link performance validation.
- UE and GW terminals controlled by Amarisoft software radio-stack.

.....

- Doppler shift, link latency and propagation losses emulated by two Channel **Emulators** connected to BUCs and BDCs.
- SNR in the test chain has been fixed considering the operative scenario.

RESULTS

- Measurement of bit rate with **lperf** network measurement tool.
- Satellite link emulated profile with **Doppler shift**, **latency** and **path loss** for an

ideal visibility from 20° to 90° of satellite elevation.

CONCLUSIONS

- A 5G satellite link for small aperture terminals has been designed, togheter with a bent-pipe transponder.
- A particular focus has been made on CFO reduction and CFO compensation.
- The main components of the satellite link have been tested in a laboratory environment, emulating Doppler shift, latency and propagation loss.
- Upload and Download bit rate are in line with the mission specifications.

BIBLIOGRAPHY

- [1] W. Chen et al., "5G-Advanced Toward 6G: Past, Present, and Future," in IEEE Journal on Selected Areas in Communications, vol. 41, no. 6, pp. 1592-1619, June 2023.
- [2] F. Alimenti et al., "A Ka-Band Receiver Front-End With Noise Injection Calibration Circuit for CubeSats Inter-Satellite Links," in IEEE Access, vol. 8, pp. 106785-106798, 2020.

5

Space Science and Technology		DEGLI STUDI	Ministero dell'Università e de
Finanziato dall'Unione europea NextGenerationEU	SPACE TECHNOLOGIES / SOLUTIONS	DITRIESTE CMXXX	