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1. Introduction

We discuss how the transport of small bodies through

the orbit of Jupiter in the Solar System is governed by

the heteroclinic intersections between the stable and

unstable manifolds of the unstable periodic orbits cor-

responding to each one of themain meanmotion reso-

nances between the body’s and Jupiter’s orbits [1],[3].

Thesemanifolds have been extensively discussed in lit-

erature in the case of the co-orbital resonance. (man-

ifolds of the periodic orbits around the collinear La-

grangian points, [2] ), but to a lesser extent for other

important mean motion resonances.

Method

Herewe show how a global visualization of these man-

ifolds can be achieved through the computation of

short time Fast Lyapunov Indicator maps [4] [5], allow-

ing to depict their underlying intricate heteroclinic dy-

namics (Figure 1 to 3).

A precise computation of these manifolds is decribed

in section 3.

2. Computation of Fast Lyapunov Indicator

Figure 1. Color Representation of the chaos indicator FLI computed in an

interval time [0, 100] on a refined grid of polar initial conditions (ϕ,pϕ) regularly

spaced on the phase-space; the value of log(FLI) is represented using a color

scale: on each point (ϕ,pϕ) of the grid we represent a pixel with a color

corresponding to the value of log(FLI): log(FLI) = 0 is reported in blu,

log(FLI) > 30 is reported in yellow; the values intermediate between 0 and 30

are reported wit the color scale represented on the right of the panel.

Figure 2. Color Representation of the chaos indicator FLI computed in an

interval time [0, −100].

Figure 3. Overlap of the two plots (Figura 1.) and (Figura 2.)

The FLI (Fast Lyapunov Indicator) maps were obtained
by integrating orbits forward and backward in time,
while varying the initial values of ϕ and pϕ, in the planar
circular restricted three body problem given by the
hamiltonian:
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where (r, pr),(ϕ, pϕ) are polar canonical coordinates.

By computing the FLI values for short times [6], one can

visually observe structures representing the stable and

unstable manifolds of various periodic orbits

characterizing the phase space.

Figures 1 and 2 show the FLI maps depicting the

dynamics around the 1:1 (co-orbital), 3:2 (Hildas), and

2:1 resonances, representing the stable and unstable

manifolds associated with them, respectively.

We observe that near the resonances (identified by the

yellow lines associated with specific values of pϕ),

stability islands with periodic orbits at their center

emerge.

Outside the stability islands (depicted by the blue areas),

chaotic motion predominates with stable (Figure 1) and

unstable (Figure 2) manifolds. Through FLI maps, a

series of chaotic trajectories connecting different

resonances identified in the map can be observed.

Figure 4. Section of Poincarè of the PCR3BP in the interval time [0, 100] on a

refined grid of polar initial condition: ϕ ∈ [0, 2π], pϕ ∈ [9, 16].The Poincaré section

considered was the surface defined by pr0 = 0.

A direct image of the corresponding phase portrait is ob-

tained by the following steps:

For the initial values, ϕ was fixed within the range

[0, 2π] and pϕ within the interval [pϕmin, pϕmax]. The
initial value of pr0 was set to zero.

Given the Jacobi constant, the initial value r0 was
chosen such that ˙pr0 > 0, r0 represents the
pericentric radius.

A value for the Jacobi constant corresponding to

T = 2.96 was set. (2 ≤ T ≤ 3 is the common range of

the Tisserand parameter for Jupiter family comets and

asteroids such as Trojans and Hildas). This was done

to subsequently obtain a Poincaré section containing

various types of orbits (Figure 4).

Conclusions

The main conclusion from Figure 1-6 is that the sta-

ble and unstable manifolds emanating from one mean-

motion resonance extended to a large chaotic domain,

thus they create heteroclinic intersections with the

manifolds emanating from other mean motion reso-

nances both at the interior or exterior to the orbit of

Jupiter. The efficiency of transport of small bodies

through the orbit of Jupiter, due to such intersection,

is under investigation.

3. Computation of Stable-Unstable
Manifolds with semi-analytical method

Using the Newton-Raphson method, coordinates repre-

senting an unstable periodic orbit, corresponding to 2:1

mean motion resonance, on the Poincaré section were

identified and the monodromy matrix associated with

this orbit was calculated [7].

Subsequently, along the directions determined by the

stable/unstable eigenvectors of the monodromy matrix,

we choosed Np points and evaluate the Poincaré section

with multiplicity, m equal to two. This process enabled

obtaining an approximation, on the section, of the stable

and unstable manifolds associated with this unstable pe-

riodic orbits.

Representation of Stable-Unstable
Manifolds

Figure 5. Representation of an approximation, using the

monodromy matrix and poincaré section (both implemented), of

unstable (red) and stable (green) manifolds associated to the

unstable periodic orbit of coordinates (ϕ = 1.545,pϕ = 9.689).

Figure 6. Representation of an approximation of unstable (yellow)

and stable (purple) manifolds associated to the point

(ϕ = 4.738,pϕ = 9.689)

Figure 7. Overlap of Figure 5 and Figure 6
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