

Prospect for measurements of heavy antimatter in space (ID 223)

<u>Francesco Rossi^{2,1}</u>, Francesco Nozzoli^{1,2} e Paolo Zuccon^{2,1}.

¹TIFPA-INFN, Via Sommarive 14, 38123 Trento, Italia ² Università di Trento, Via Sommarive 14, 38123 Trento, Italia

GEANT

Metastable states in Helium and the PheSCAMI detector

An **Helium atom can capture antiparticles** as antiprotons and antideuterons stopping nearby. The atom looses an electron and the captured antiparticle occupies a large orbit (n~38). Auger and collisional Stark effect are suppressed. The ground state can be reached **only** through **radiative** transitions. The metastable states increase the annihilation lifetime from $\sim ps$ to $\sim \mu s$. Such increment has been observed in **antiprotons**, π^{-} and K^{-} .

The PheSCAMI project aims to identify low energy antideuterons inside the cosmic rays (CRs), measuring the annihilations delayed within the pressurized Helium target.

The detectors has two systems: the Time of Flight (TOF) and the Helium calorimeter (HeCal).

The **TOF** is composed of **segmented** plastic scintillator (44 mm X 54 m²) with resolution of: σ_{β} = 5% and σ_{E} = 5%. The **HeCal** is made of 75 **Helium tanks** (75 L and 310 bar) with the following resolutions: $\sigma_t \sim ns$ and $\sigma_E = 10\%$. Those tanks are **space qualified** and will be used by ESA.

The Alpha Magnetic Spectrometer (AMS-02)

The Alpha Magnetic Spectrometer is a state-of-the-art particle physics detector designed to operate as an external module on the International Space Station (ISS). The objectives of AMS-02 are the precise measurement of cosmic rays (CRs) composition and the search for **antimatter in space**.

PhD SST

Space Science

and Technology

Trigger logic, rates and acceptances

The trigger logic has two selection: prompt and delayed. The prompt selection rejects minimum ionizing particles (MIPs), while the delayed selection search for signs of a delayed annihilation.

PROMPT (0, 50 ns)	DELAYED (50 ns, 4'000 ns)
Max E_{dep} TOF > 2 MIP _{TOF}	Max E_{dep} TOF > 1 MIP _{TOF}
Max E_{dep} HeCal > 1.3 MIP _{HeCal}	Max E_{dep} HeCal > 1.3 MIP _{HeCal}
Number of TOF prompt hit ≤ 3	Number of TOF delayed hit > 4

The trigger logic has been applied to the most common particle and nuclei in CRs (**p**, **e**⁻, ⁴He, ¹²C) obtaining the expected rate. The acquisition rate for ordinary matter is ~ 100 Hz. The geometric acceptances have been obtained considering the probability of create a metastable state and to observe the delayed annihilation within 4 µs. The expected sensibility to an antideuterons flux with three circumpolar flight is ~10⁻⁵ [GeV m² sr s]⁻¹.

AMS consists of a permanent magnet surrounded by an array of particle detectors to measure momentum and charge of the passing particles and nuclei. The core of AMS is the **silicon tracker** composed by **nine silicon layers**, seven of them are within the magnet bore and the total lever arm is 3 m.

The coordinate system of AMS is concentric with the center of the magnet, with the y-z plane as the bending plane.

Monte Carlo toy

The particle and antiparticle behave the same way in the detector, except for the rigidity (p/Z) curvature. The response of an AMS-02 like detector is implemented in a Monte Carlo simulation. The aim is to identify several sources of charge confusion that can lead to misidentification of an He as anti-He. The selection applied to the **simulated** ⁴He events aims to obtain a well reconstructed Helium sample.

Charge confusion sources

Using the MC simulation four different sources of charge confusion have been identified. The first three corresponds to interactions that the primary particle can do within the inner tracker: hadronic **inelastic scattering**, hadronic **elastic scattering** and large angle scattering (Coulomb scattering). The fourth source is due to the finite resolution of the detector and is called **spillover**.

Antideuterons identification

The left plots show two different variables as a function of the prompt energy released in the HeCal. The upper-left plot shows the TOF β , while the bottom left plot shows the energy deposit in the out TOF layer, normalized on a MIP scale (2 MeV/cm). The right plots shows the hits number in the TOF as a function of the delayed energy release in the HeCal on the x-axis. The upper-right plot is for antideuterons, while antiprotons are reported on the bottom-right plot.

The figure shows the distribution of the **reconstructed 1/R** using the **inner span** for generated rigidities of 10 and 100 GV. The width and mean of the distributions decreases with an increasing R_{gen}.

Requiring R_{UH} , $R_{LH} > 0$, no interaction within the inner tracker and $R_{INNER} < 0$ a pure **sample of spillover can be selected**. Figure below shows one event of such sample.

Select pure sample for each charge confusion source is important to develop a machine learning technique to quantify the reconstruction quality of an event.

