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Introduction

In recent years, significant advancement in celestial mechanics has emerged through
the variational method applied to the n-body problem, leading to the discovery of
novel orbital trajectories. This approach involves: firstly, discretising the problem;
then, examining critical points of the Lagrangian action associated with the n-body
problem as they represent periodic solutions of the dynamical system and they can
be numerically found by merging evolutionary and deterministic algorithms.

The Problem

Once selected the planar three body problem as main model, the first goal is to
search for symmetrical periodic orbits using the method of nonlinear programming.
Following [1], and [3] only collision free symmetries that yield to coercive action
functionals are considered. In order to define a symmetry, one selects finite groups
G, which act on:

• the time circle T ⊂ R2;

• the Euclidean space E;

• the set of indices n = {1, 2, 3}.

In this research, the Line group is chosen; it consists of a reflection on the time
circle T , a reflection on the plane E, and a trivial mapping on the set of indices.
In detail, set ri(t) = (xi(t), yi(t)) and its derivatives ṙi(t) = (ẋi(t), ẏi(t)) with
i = 1, . . . , n = 3, one can write the action functional as:

Aω = ∫T Lω(r(t), ṙ(t))dt, ω ∈ R,

where, set J the complex unit, mi mass of i-th body and α = 1,

Lω(r(t), ṙ(t)) = Lω =Kω +U
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Setting the period T = 2π and as all masses can have different values, the sought
solutions can be written as Fourier series:
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with some symmetry set conditions on the coefficients. In particular, setting at t = 0
and t = π that the masses are collinear on a fixed line l ⊂ E, if the line l coincides
with the axis of abscissae, then one has bk
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= 0. Using the frame with origin
at the centre of mass, it follows that:
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Therefore one needs to specify 2 (2k + 1) coefficients only.

The Method

First Step. In order to find them, the main idea is to combine two algorithms:
a multi-population adaptive version of inflationary differential evolution one (called
MP-AIDEA, see [2]) and a domain decomposition one. MP-AIDEA consists of an
inflationary differential evolution algorithm which combines basic differential evo-
lution with some of the restart and local search mechanisms of monotonic basin
hopping. On the other hand, using a domain decomposition algorithm guarantees
a full exploration of the solution space. The results obtained represent feasible and
physically meaningful solutions of the dynamical system as they are periodic orbits
that satisfy the associated differential equations.

Second Step. Subsequently, attention shifts towards assessing the functional sta-
bility of the problem. Orbit trajectories identified in the previous phase are mapped
as critical points, allowing for an examination of the stability or instability within
their respective neighbourhoods. This involves treating the problem as a dynamical
system, analysing the gradient of the action functional A, denoted as η′ = −∇A(η).
This approach not only characterises the minima discovered earlier but also delin-
eates the basin of attraction for each minimum, thanks to the algorithm’s analysis
of the initial input data or starting point.

Third Step. Lastly, one focuses on analysing the boundaries of these basins of
attraction. It has been established that when two boundaries converge and then
separate, the point of separation asymptotically converges to a critical point that
is not a minimum. Using conventional algorithms such as the Newton method en-
ables the numerical approximation of these new critical points, which differ from the
previously identified minima.

Conclusion || Improvement

Despite its theoretical nature, this methodology holds practical applications in As-
trodynamics, particularly in mission design and the deployment of satellite constel-
lations into orbit.
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