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of the pronacation (e,g, diffusion due to the scattering on the
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tribution of the calactic gas etc),
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link SN/PSR/SNR —> PSR rotational energy —> magnetic dipole radiation energy
—> energetic particles™

i PSR must be extremely powerful to explain Galactic CRs |
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® newborn rapidly rotating PSR can accelerate to 1020 eV
B compensate adiabatic losses in the expanding SN shell

* in some papers also "fturbulence inside the SN shell” or a "relativistic stellar outflow” are also mentioned
as possible acceleration mechanisms
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| multi-messenger astrophysics is not a new idea I
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VSB & Prilutsky 1977, 1978

B each PSR should INJECT in the ISM 10%0 erg of CRs
® to compensate for adiabatic losses much more should be ACCELERATED
® very powerful PSRs are required
¥ gamma-ray emission detectable also from extragalactic SNae (15 Mpc)
& violate diffuse gamma-ray emission >100 MeV
® problem mitigated if CRs are produced later (> 10 yr)

® escape due to p —> n conversion could also help
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We are convinced, without of course making any pre-
tense of originality, that it is highly advisable, indeed im-
perative, promptly to initiate long-term, correlated patrols
for supernovae and associated objects (young envelopes,
in particular) by every technique possible. Our purpose in
this letter is to consider which are the most promising
avenues to include in an observing program designed to

monitor galactic supernovae outbursts for many years to
come,
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this letter is to consider which are the most promising I
avenues to include in an observing program designed to

monitor galactic supernovae outbursts for many years to
come,
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8 Neutrinos in the MeV domain —> SN1987A |

® Gravitational waves (w. "current” detectors, but how anisotropic is the explosion?)
® Infrared radiation (less attenuated by dust)

® Radio emission from SN shells

B Gamma rays beyond 100 MeV (see previous slide)

& Neutrinos beyond 100 GeV (to break the hadronic/leptonic degeneracy)

& UHE (>108 eV) neutrons (can reach us from Gal centre without decaying)
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tense of originality, that it is highly advisable, indeed im-~ 7
perative, promptly to initiate long-term, correlated patrols | .
for supernovae and associated objects (young envelopes, who would write such a

in particular) by every technique possible. Our purpose in sen'l'ence on a paper 'I'oday?
this letter is to consider which are the most promising ——
avenues to in To develop apparatus that may be triggered ]ust once
monitor galq a decade or longer is admittedly unappealing from a psy- |
come, | chological viewpoint. Inthe firstplace, though, experiments
of this kind represent nothing new for modern physics
(witness the neutrino stellar-collapse detectors and the
facilities designed to search for proton decay); and sec-
ond, we are proposing a continuous (one cycle every 2-3
weeks) scan program only for the infrared telescope, as
an early announcement system. For the other types of
'radiation we merely suggest that measures be taken to set

neutrinos could be recorded by existing detectors for low- |
energy stellar-collapse neutrinos and decaying protons. |
| The y-rays observations, however, would warrant a work- |

ing group with a carefully planned program of peremptory
T activities.
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Since the discovery of supernova 1987A (Shelton) several authors' |
have noted that it may provide an excellent opportunity to observe |
' the cosmic ray output of a young pulsar through the ‘beam dump’ §
| that the supernova ejecta provide. It has been suggested’ that |
neutrino emission from p—p collisions is possible immediately, and |
 that ultra-high energy 7y-ray emission might be possible after |
| several months, when the supernova remnant becomes transparent |
to them. In this letter we argue that the cosmic abundances of Li,

Be and B set significant constraints on the cosmic ray proton |
production in the young (¢ < 1 yr) remnant, and, in particular, rule |
out neutrinos from shock-accelerated protons in the ejecta at |
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have noted that it may provide an exce T NASA/Goddard Space Flight Center, Greenbelt,

the cosmic ray output of a young pulsq Maryland 20771, USA
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| that the supernova ejecta provide.

neutrino emission from p—p collisions §
that ultra-high energy y-ray emissid Young supernova remnants are likely to be bright sources of |
| several months, when the supernova re| energetic photons and neutrinos through the collision of particles |
to them. In this letter we argue that th accelerated inside the remnant'~. Interactions of accelerated parti- |
Be and B set significant constraints | cles in the expanding envelope or in ambient radiation fields will |
production in the young (<1 yr) rem also groduce secondary photons and neutrinos at some level. If |
out neutrinos from shock-accelerated >10°" ergs™" in protons above 10 TeV is injected into the target
currently detectable levels. region, TeV photons from SN1987A could be observable with |
—— | present detectors*®. Synchrotron X rays and y-rays up to 10 MeV, |
generated by accelerated electrons, may well also be detectable. |
We discuss a pulsar wind model for acceleration of particles and )\
1 find that it would produce observable signals if the spin period of |
the pulsar is < 10 ms. |
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| several months, when the supernova re| energetic photons and neutrinos t

| find that it wg fd produce observs
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Supernovae have long been considered as likely sites of cosmic-ray |
| acceleration. Interaction of newly accelerated cosmic-ray nuclei
l with target material within the expanding supernova is expected |
| to produce an observable flux from SN1987A of very high-energy |
| and possibly ultra high-energy y-rays in the TeV and PeV ( 10 eV) |
 ranges, and several experiments are being constructed to detect |
this radiation. The presence of intense infrared emission from the |
supernova itself will, however, make some regions of SNI1987A |
opaque to TeV and PeV y-rays due to pair-production interactions. |
Observations at these energies, combined with a knowledge of |
which regions of SN1987A could be contributing y-rays may thus
give information about the nature and location of particle
accelerators in supernovae. Here I discuss the important question
of photon-photon pair-production interactions and calculate from
which regions of SN1987A may be observed TeV and PeV y-rays.
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Cosmic rays and gamma radiation
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Detection of high-energy gamma rays from young supernovae
shells'? can directly prove the hypothesis that the main sources
of cosmic rays (CR) in our Galaxy are supernovae. This radiation
is produced in nuclear collisions of accelerated protons and nuclei,
through the decay of pions. On 13 April 1987 an attempt was
made to measure the gamma radiation from SN1987A between
50 and 500 MeV in energy by an international team from Australia,
UK, FRG and USA (R. Stauberg, personal communication). Spark
chamber measurements from a balloon gave a preliminary upper
limit to the flux of j, <3x10™*cm™s™". The search for high-
energy gamma rays is also possible using the ground-based
Cerenkov-light detectors at Potchefstroom (S. Africa) and White
CIliff station (Australia) for E, 2 1TeV, and by means of the
extensive air shower (EAS) array at Buckland Park (Australia)
for E, 2 10° GeV. Such observations, we show here, can discover
CR in the SN1987A shell if they are produced inside the shell
with luminosity down to L,~ 10" ergs™. This can support or
reject a very wide class of the models of CR production by
supernovae. We argue that such measurements for SN1987A will
be possible during the next 1-2 years, emough time to move
Cerenkov detectors from the Northern to the Southern Hemi-
sphere.
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CR energy density gas mass in the disk
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li balloon observations —> I jy(50 — 500 MeV) < 3x107* cm™2%s~!

(R. Stauberg, personal communication)
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TeV emission emitted later (opacity) and could be see by "current” instruments if

39
L,> 107 erg/s
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TeV emission emitted later (opacity) and could be see by "current” instruments if
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Gamma ray emission from young SNRs
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i pioneer "modern” (i.e. DSA based) models
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Time delay of the PeV gamma ray
burst after the October 1985
radio flare of Cygnus X-3

V. S. Berezinsky*

Istituto di Cosmo-geofisica, CNR, Corso Fiume 4,
Torino 10133, Italy

Cygnus X-3 remains a puzzling and controversial source of ultra-
high-energy radiation, E =0.1 PeV (1 PeV=10"eV). At these
energies the radiation is variable'™, with periodicity 4.8 h and a
prominent peak at phase ~0.2 during 1976-1980 and at phase
~0.6 after 1984. There are outstanding difficulties in explaining
both the phase diagram of the radiation and also the high luminos-
ity in particles, L, = 10* erg s™". In existing data, TeV and some-
times PeV radiation has been seen episodically; such an episode
is connected with the radio flare of Cyg X-3 in October 1985, when
PeV radiation with no phase structure was seen. The PeV pulse
was detected® 3-5 days after the radio flare. It was suggested® that
this delay could be explained by introducing a massless free gluon
as an intermediary, but here I propose a more natural explanation
in which gamma-photons of PeV energy are absorbed by radio
radiation inside the source. After a delay, the gamma radia-
tion emerges as the radio flux diminishes and absorption
decreases.

also VSB 1985, VSB, Castagnoli & Galeotti 1986
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radio flare of Cygnus X-3 radio emission diminishes
V. S. Berezinsky* .g |
Istituto di Cosmo-geofisica, CNR, Corso Fiume 4, %
Torino 10133, Italy -
5 ]
- L
Cygnus X-3 remains a puzzling and controversial source of ultra-
high-energy radiation, E =0.1PeV (1 PeV =10"¢eV). At these =
energies the radiation is variable'™, with periodicity 4.8 h and a 3
prominent peak at phase ~0.2 during 1976-1980 and at phase X
~0.6 after 1984. There are outstanding difficulties in explaining i
both the phase diagram of the radiation and also the high luminos-
ity in particles, L, = 10" erg s™". In existing data, TeV and some- *\_/\,_l\r 1
0 T S N S N NN N S N N SN SN S J

times PeV radiation has been seen episodically; such an episode
is connected with the radio flare of Cyg X-3 in October 1985, when
PeV radiation with no phase structure was seen. The PeV pulse
was detected® 3-5 days after the radio flare. It was suggested® that
this delay could be explained by introducing a massless free gluon
as an intermediary, but here I propose a more natural explanation
in which gamma-photons of PeV energy are absorbed by radio
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Cygnus X-3

A. M. Hillas, "Evolution of ground-based gamma-ray astronomy
from the early days to the Cherenkov Telescope Arrays” (2013)

In September 1972 the Crimean observatory
made a drift scan with their original simple telescope across the
direction of Cygnus X-3 soon after a radio outburst, and recorded
an apparent brief increase in the rate of detection of Cherenkov
showers [50]. An enhancement was seen only once in nine further
scans made that year. In further runs up to 1977 they reported
more instances of excess counts above background, the excess
Cherenkov showers being confined to a short interval of the 4.8-
h orbital period of the system. This provided a new target for
observation with simple Cherenkov telescopes, and by 1988 there
had been more than 10 reports of detections of Cygnus X-3 by the
Cherenkov technique, especially by the Durham group, but includ-
ing two at the Whipple site, concentrated in two parts of the orbital
period. But the most astonishing and challenging developments
occurred in a few years from 1983. In that year M. Samorski and
W. Stamm [43] reported that a hadronic air shower experiment
in Kiel showed (integrated over years) a small count rate excess
from the Cygnus X-3 direction; and a large part of this excess ap-
peared at times corresponding to the Crimean “hot” phase of the
4.8-h orbit - but this was in the 10'° eV energy range, and these
“excess" showers contained many muons, just like typical hadronic
showers. Then this 4.8-h cycle was reported in showers in a similar
energy range recorded at Haverah Park (but without a clear overall
excess from that direction showing up), and a 4.8-h effect, though
not identical, was seen in the muon-detecting shower experiment
at Baksan (Caucasus), and even in other deep underground (muon)
detectors (NUSEX and Soudan). What particles could travel ~7
kiloparsecs retaining their direction and timing, and produce copi-
ous hadronic secondaries? Were photons behaving oddly at very
high energy?
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The photino has been suggested [24] as a candidate
for the cygnet. However, detailed calculations [25]
showed that this hypothesis needed a source with lu-
minosity L, > 2 X 1044 (£2/0.01) erg/s where  is the = - e
solid angle in steradians which contains the original pro- | the existence of a new par-'l'icle (called |
ton beam, which is impossible for a galactic source. A | lain dat
glueballino G (g bound state) has also been consid- l chﬁ_g_r:el) needed O exp m e
ered {26,27]. It can explain the EAS and their muon
content, but gives a flux of TeV muons which is 1/30
of that observed, albeit larger than from proton prima-
ries as seen in fig. 1 ¥2. Free massless coloured gluons
produced through a breakdown of confinement in pp
collisions at very high energies have also been proposed
[29] as cygnets. This wa the only model known to us
which tried to explain the (+5)° X (+5)° angular
spread of the NUSEX muons [10] . It was proposed to
originate from the scattering of the high energy gluon
beam on relic gluons in interstellar space. However, as
will be shown later, this also results in an unacceptable
increase in the pulse duration. Thus we know of no
successful attempt to explain the underground
data.
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Cygnus X-3

A. M. Hillas, "Evolution of ground-based gamma-ray astronomy
from the early days to the Cherenkov Telescope Arrays” (2013)

In September 1972 the Crimean observatory
made a drift scan with their original simple telescope across the
direction of Cygnus X-3 soon after a radio outburst, and recorded
an apparent brief increase in the rate of detection of Cherenkov
showers [50]. An enhancement was seen only once in nine further
scans made that year. In further runs up to 1977 they reported
more instances of excess counts above background, the excess
Cherenkov showers being confined to a short interval of the 4.8-
h orbital period of the system. This provided a new target for
observation with simple Cherenkov telescopes, and by 1988 there
had been more than 10 reports of detections of Cygnus X-3 by the
Cherenkov technique, especially by the Durham group, but includ-
ing two at the Whipple site, concentrated in two parts of the orbital
period. But the most astonishing and challenging developments
occurred in a few years from 1983. In that year M. Samorski and
W. Stamm [43] reported that a hadronic air shower experiment

in Kiel showed (integrated over years) a small count rate excess
from the Cygnus X-3 direction; and a large part of this excess ap-

peared at times corresponding to the Crimean “hot” phase of the
4.8-h orbit - but this was in the 10'° eV energy range, and these
“excess” showers contained many muons, just like typical hadronic
showers. Then this 4.8-h cycle was reported in showers in a similar
energy range recorded at Haverah Park (but without a clear overall
excess from that direction showing up), and a 4.8-h effect, though
not identical, was seen in the muon-detecting shower experiment
at Baksan (Caucasus), and even in other deep underground (muon)
detectors (NUSEX and Soudan). What particles could travel ~7

kiloparsecs retaining their direction and timing, and produce copi-

ous hadronic secondaries? Were photons behaving oddly at very
high energy?

Several of the Cygnus X-3 reports seemed absurd, as many
observations did not demonstrate an actual excess of counts from
that direction, but only a periodic modulation: a discussion by
C. Chardin and G. Gerbier in 1989 of the statistical inconsistencies
and underestimated effects of selection, re-scaling and special
choices of orbital ephemeris concluded that none of the observa-
tions was yet statistically convincing ([54] - this includes many
references not quoted here). When one considers the incredible
4.8-h periodicities extracted even in underground experiments, |
am made to remember that my Harwell mentor, T.E. Cranshaw,
once explained to me that a physicist’s apparatus gradually learns
what is expected of it. This is the best explanation I know of at
present for this episode (and happily convenient, blaming the
apparatus for a dog-like desire to please).
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UHECRs from the Galactic centre?

VSB, Mikhailov & Syrovatskii 1979; VSB & Mikhailov 1984

86 0G 9.1-21

ON THE GALACTIC ORIGIN OF COSMIC RAYS WITH ENERGIES UP TO I0™’eV.
V.S5.Berezinsky, A.A.Mikhailov, 3.1.Syrovatekii
Institute for Nuclear Research of the Academy
Of Sciences of the USSR

Abstract

It is shown that spectrum and anisotropy § ~ 10~ B of cosmic rays at

? ¥ eV can be explained in the galactic model with the regular compo-
nent of magnetic field in the halo, while the extragalactic models meet
serious difficulties in the explanation of the absolute value of the flux
and predict the anisotropy smaller than the observed one.
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Can the ultrahigh-energy cosmic rays stem from the galactic
center?

V. S. Berezinskil and A. A. Mikhailov

Institute for Nuciear Research, USSR Academy of Sciences, Moscow
and Institute for Cosmophysical Research and Aeronomy, Siberian Branch, USSR Academy of Sciences, Yakutsk

(Submitted August 29, 1983; revised January 12, 1984)
Pis'ma Astron. Zh. 10, 269-274 (April 1984)

The question is posed of whether the galactic center can represent the prime source of the nltrahigh-energy
(E £ 10"7-10"" eV) cosmic rays observed in the Galaxy. If so, the direct flux of neutrons generated in a central
cloud of thickness = 7.5 g/cm* ought to have been detected by extensive air shower facilities. Trajectories in a
model regular magnetic field for the galactic disk and halo are calculated numerically for particles of rigidity
E/Z > 10" ¥V emitted by the galactic center. For reasonable field parameters the particles will escape from the
Galaxy in €107 yr, causing serious difficulties for the hypothesis that the ultrahigh-energy rays originated in a
nonstationary galactic nucleus which experienced a burst of activity 107 yr ago. And a stationary nuclcus
would imply a far higher anisotropy than can be reconciled with the observations.
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Thorne-Zytkow star candidates

List of candidate TZOS |edi;

Right
Candidate . . Declination Location Discovery Notes Refs
ascension
Small Classified as a supergiant TZO  [2l[17]
HV 2112 01" 10M 03.87°5 -72° 36’ 52.6” Magellanic 2014 candidate!?I17(181019] or gn (18]
Cloud AGB starl¥ [19)14]
Small
. , Classified as an AGB star* or | ...
HV 11417 01" 00™M48.2%  -72°51’02.1”  Magellanic | 2018 - 4]i16]
a foreground halo star!'®!
Cloud
V595 Cassiopeiae | 01" 43™M 02.72% | +56° 30’ 46.02”  Cassiopeia | 2002 [20]
|0 Persei 03" 06™ 47.275 +55° 43’ 59.35” Perseus 2002 [20]
KN Cassiopeiae | 00" 09™ 36.37% | +62° 40’ 04.12” | Cassiopeia | 2002 [20]
Catalogued as a R Coronae
U Aquari 2oh 03M 19,695 | —16° 37 352" | Aquarius | 1999 goed! 7
Borealis variable
Catalogued as a R Coronae
VZ Sagittarii 18" 15M 08.58% -29° 42’ 29.6”  Sagittarius | 1999 9 (7]

Borealis variable



Whm‘ I Iear'ned pr'epar'mg 'rhls 'I'alk

¥ the breadth of VSB's scientific interests was even broader than I thought !l
2 the history that led from Baade & Zwisky 1934 to the first detection of SNRs

in gamma-rays (2003) was much longer than I knew !l

& multi-messenger astronomy is old stuff

& (in some sense, what said above is a bit embarrassing but, on the other hand,
that proves that I am still young !)

& "the theorist plays no role in physics” —> our field is definitely data-driven,
truly original and innovating theoretical predictions are very rare (but think
about, e.g., hidden neutrino sources!)

¥ "..and everyone knows they can explain any result” —> not always true! (think

about Cygnets...)
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Even though I never talked to him (and I now regret that), I have always
considered VSB as a sort of a "quide” or "teacher”, from my very first day as a
graduate student (clusters of galaxies are storage rooms for cosmic rays!) to very
recent days (if I had known better VSB's papers, the detection in neutrinos ONLY
from NGC 1068 would have been much less of a surprise...). Thanks!



