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I always thought, although I was afraid to express these thoughts out loud, that the 
theorist plays no role in physics. It is dangerous to say this among theoreticians. They 

are convinced that experiments are needed only to verify the results of their 
theoretical conclusions, although, in fact, the opposite is true: laws are established 

experimentally, and theorists only explain them later. 
  

And everyone knows they can explain any result. 

The story is told about Yakov Frenkel: supposedly, in the 30s at the Ioffe Institute, 
an experimentalist caught him in the corridor and showed him an experimental curve. 

After thinking for a minute, Frenkel gave an explanation of the curve. However, it 
turned out that the plot was upside down. The curve was put in its place and, after 

thinking a little more, Frenkel explained this curve as well. 
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gamma, neutrino, and neutron source

VSB & Prilutsky 1977, 1978

how to accelerate particles before BOBALSKy 77-78? 

link SN/PSR/SNR —> PSR rotational energy —> magnetic dipole radiation energy 
—> energetic particles* 

* in some papers also “turbulence inside the SN shell” or a “relativistic stellar outflow” are also mentioned 
as possible acceleration mechanisms

 newborn rapidly rotating PSR can accelerate to 1020 eV 
 compensate adiabatic losses in the expanding SN shell

PSR must be extremely powerful to explain Galactic CRs
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gamma, neutrino, and neutron source

VSB & Prilutsky 1977, 1978

shell (ejecta) of mass                 and initial velocity∼ 1 M⊙ ∼ 109 cm/s

PSR

shell CR

observer

ν

multi-messenger astrophysics is not a new idea
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VSB & Prilutsky 1977, 1978

shell (ejecta) of mass                 and initial velocity∼ 1 M⊙ ∼ 109 cm/s

Time scales

(1)         decay time of charged pions  <  pion-nucleon collisions

(2)        shell transparent to neutrons —>

(3)        shell transparents to gammas —>

(4)        adiabatic losses dominate over nuclear collisions
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Problem w. the PSR origin of cosmic rays
VSB & Prilutsky 1977, 1978

 each PSR should INJECT in the ISM 1050 erg of CRs

 to compensate for adiabatic losses much more should be ACCELERATED

 very powerful PSRs are required

 gamma-ray emission detectable also from extragalactic SNae (15 Mpc)

 violate diffuse gamma-ray emission >100 MeV

 problem mitigated if CRs are produced later (> 10 yr)

 escape due to p —> n conversion could also help 
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SN surveys/follow ups

“A theorist is usually a failed experimentalist” 

VSB, Ginzburg & Prilutskii 1983, 1984

who would write such a 
sentence on a paper today?

 Neutrinos in the MeV domain —> SN1987A ! 
 Gravitational waves (w. “current” detectors, but how anisotropic is the explosion?) 
 Infrared radiation (less attenuated by dust) 
 Radio emission from SN shells 
 Gamma rays beyond 100 MeV (see previous slide) 
 Neutrinos beyond 100 GeV (to break the hadronic/leptonic degeneracy) 
 UHE (>1018 eV) neutrons (can reach us from Gal centre without decaying)



SN surveys/follow ups

“A theorist is usually a failed experimentalist” 

VSB, Ginzburg & Prilutskii 1983, 1984

who would write such a 
sentence on a paper today?



February 23rd 1987



august



august



august

VSB & Prilutsky 1978



august

VSB & Prilutsky 1978

september



august

VSB & Prilutsky 1978

september



august

VSB & Prilutsky 1978

september

september



august

VSB & Prilutsky 1978

september

september

quoted in the 
main text



SN 1987A

october



SN 1987A

october



SN 1987A

october



SN 1987A

october



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk

SN rate



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk

SN rate CR grammage



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk

SN rate CR grammage

LSN
p ∼

A WSN
p

τacc
CR power



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk

SN rate CR grammage

LSN
p ∼

A WSN
p

τacc
CR power

1050 erg <— hypothesis



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk

SN rate CR grammage

LSN
p ∼

A WSN
p

τacc
CR power

1050 erg <— hypothesis

acceleration 
time <— model



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk

SN rate CR grammage

LSN
p ∼

A WSN
p

τacc
CR power

1050 erg <— hypothesisadiabatic losses model —>

acceleration 
time <— model



SN 1987A

VSB & Ginzburg 1987; VSB, Castagnoli & Navarra 1988

VSB & Ginzburg, Nature, 1987 

WSN
p ≈

cWpMg

νSNΛ
≈ 1050 ergCR input per SN —>

CR energy density gas mass in the disk

SN rate CR grammage

LSN
p ∼

A WSN
p

τacc
CR power

1050 erg <— hypothesisadiabatic losses model —>

γ-ray limits 
constrain this  —>
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SN 1987A
VSB & Ginzburg, Nature, 1987 

balloon observations —> jγ(50 − 500 MeV) < 3 × 10−4 cm−2s−1

courtesy V. Tatischeff

limit on CR luminosity —> Lp < 5 × 1041 erg/s

(R. Stauberg, personal communication)
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Gamma-ray flare from SN 1987A

VSB & Stanev, 1989 

slightly smaller than 
previously reported 

upper limits 

protons accelerated at the 
PSR wind termination shock

they accumulate in the shocked wind 
material due to diffusive confinement

Rayleigh-Taylor instabilities at contact discontinuity

protons penetrate in the high-density ejecta and produce the gamma rays
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pioneer “modern” (i.e. DSA based) models

acceleration takes place to larger distances from the explosion site 
—> less dense gas —> fainter gamma-ray emission

forward shock
reverse shock

contact discontinuity

upstreamupstream downstream

adiabatic losses

beginning of a long story who let 
to the development of 

sophisticated non-linear models… 
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Cygnus X-3 VSB, 1988 (Nature)

also VSB 1985, VSB, Castagnoli & Galeotti 1986

absorption of PeV gammas 
inside the source

radio emission diminishes

PeV radiation emerges
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the red supergiant expands and swallows the PSR

VSB & Prilutsky 1981
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all radiation is thermalised (column density 105 g/cm2), only neutrinos escape! 

VSB & Prilutsky 1981
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Thorne-Zytkow star candidates



What I learned preparing this talk
“Call yourself a theorist, and doing nothing becomes intense thinking about a topic”

 the breadth of VSB’s scientific interests was even broader than I thought !!! 

 the history that led from Baade & Zwisky 1934 to the first detection of SNRs 

in gamma-rays (2003) was much longer than I knew !!! 

 multi-messenger astronomy is old stuff 

 (in some sense, what said above is a bit embarrassing but, on the other hand, 

that proves that I am still young !)  

 “the theorist plays no role in physics” —> our field is definitely data-driven, 

truly original and innovating theoretical predictions are very rare (but think 

about, e.g., hidden neutrino sources!) 

 “…and everyone knows they can explain any result” —> not always true! (think 

about Cygnets…)
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