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Thus, at the Planck time t = 1, the whole universe consisted of 1090 

causally disconnected parts of size ct =O(1). Such parts did not know 

about each other. If someone wanted to create the universe at the 

Planck time, he/she could only make a Small Bang in a tiny part of the 

universe of a Planck size ct = O(1), containing a single particle.  

Everything else was beyond causal control.

According to the hot Big Bang theory, the total number of particles did not 

change much during the expansion of the universe, so the universe at 

the Planck time was supposed to contain at least ~1090 particles. At the 

Planck time t =O(1), there was one particle per Planck length ct =O(1).

Is it possible to start with less than a milligram of 

matter (or nothing at all) and produce 1090 particles 

from it? 



Take a box with large vacuum energy density V

In an expanding universe this box grows in size. It has the same vacuum 

inside, with the same ENERGY DENSITY. The total energy inside GROWS, 

it is proportional to the volume.

Then, the vacuum decays and produces an enormous number of protons, 

proportional to the volume of the box.

de Sitter     1917

Levi-Civita  1917

de Sitter space 



One of the Einstein equations for the flat empty universe with vacuum 

energy density V0 (cosmological constant) is

It has a solution describing an exponentially growing (inflating) universe:

The total vacuum energy of such universe grows even faster, as volume

If eventually this vacuum state decays, it produces exponentially many 

elementary particles with exponentially large energy.

Alan Guth 1980



If the universe is empty, how can anyone know that it expands?

The universe with a constant positive vacuum energy V0 is 

de Sitter space, which looks expanding in one system of 

coordinates, collapsing in another system of coordinates, 

and static in yet another coordinates.

If there is no preferable coordinate system, there is no preferable 

time when the vacuum state decays. Therefore, vacuum decays 

chaotically, and the universe becomes grossly inhomogeneous, 

unsuitable for life.  After a year of investigation, Guth and Hawking 

concluded that this scenario cannot be improved.



A solution of this problem was found in 1981 (“new inflation”): 

Instead of a vacuum state with a constant vacuum energy V0, one 

should consider a slowly moving scalar field with a not very steep 

potential V(). If the potential is too steep – no inflation. If it is too flat – 

the universe becomes grossly inhomogeneous due to quantum 

fluctuations. 

Inhomogeneities are inversely proportional to dV/d That is why one 

could not improve the old inflation scenario where dV/d = 

And then, in 1983, it was realized (“chaotic inflation”) that it is better not 

to rely on the idea that the universe was born in the hot Big Bang. 



Inflation
Starobinsky, 1980 – modified gravity, R + R2 

a complicated but almost working model

Guth, 1980 - old inflation (inflation in a false 

vacuum)

1983 - chaotic inflation 1991 - hybrid inflationA.L., 1982 - new inflation



             The simplest chaotic inflation model

Eternal  Inflation

AL 1983, 1986



Consider a tiny universe of a smallest possible size 10-33 cm at the 

Planck density. If the potential energy of the scalar field in this domain 

was greater than its kinetic and gradient energy, it starts growing fast. 

Within 10-42 s the universe becomes homogeneous and completely 

dominated by the potential energy of the scalar field.

The solution shows that the universe grows approximately exponentially. 

At the end of inflation, the universe grows up by a factor 

Here 0  is the initial value of the field.

Equation for the 

scalar field

Einstein’s equation





in ANY units of length 



The universe after inflation becomes huge and almost 

absolutely uniform, but quantum fluctuations make it slightly 

non-uniform. This leads to formation of galaxies and tiny 

perturbations of the temperature of the universe 



In this theory, original inhomogeneities are 

stretched away, but new ones are produced from 

quantum fluctuations amplified during the 

exponential growth of the universe.

                         Mukhanov and Chibisov 1981

Galaxies are children of quantum fluctuations 

produced in the first 10-35 seconds after the birth 

of the universe.



Quantum fluctuations produced during inflation



x

Small quantum fluctuations of all physical fields exist everywhere. They are 

similar to waves, which appear and then rapidly oscillate, move and 

disappear. Inflation stretched them, together with stretching the universe. 

When the wavelength of the fluctuations becomes sufficiently large, they stop 

moving and oscillating, and do not disappear. They look like frozen waves.





x

When expansion  of the universe continues, new quantum fluctuations 

become stretched, stop oscillating, and freeze on top of the previously 

frozen fluctuations.





x

This process continues, and eventually the universe becomes 

populated by inhomogeneous scalar field. Its energy takes different 

values in different parts of the universe. These inhomogeneities are 

responsible for the formation of galaxies.

Sometimes these fluctuations are so large that they can increase the 

value of the scalar field in some parts of the universe. Then inflation in 

these parts of the universe occurs again and again. In other words, 

the process of inflation becomes eternal.

We will illustrate it now by computer simulation of this process.



This is an image of quantum fluctuations produced by inflation 

10-35 seconds after the Big Bang.  These tiny fluctuations were 

stretched by inflation to incredibly large size, and now we can 

observe them using all sky as a giant photographic plate





According to Planck 2018, non-inflationary HZ spectrum with ns = 1 is 

ruled out at a better than 6 level, just as predicted in 1981 by 

Mukhanov and Chibisov. (This is an important prediction of inflation, 

similar to asymptotic freedom in QCD.)

An impressive success of inflationary theory

Agrees with predictions of the simplest 

inflationary models with accuracy  O(10-4).

Universe is flat with 

accuracy about 10-2

Spectrum of perturbations 

is nearly flat

Planck + SPT + BAO



B-modes: a special polarization pattern which can be 

produced by gravitational waves generated during inflation. 

A discovery of the gravitational waves of this type could 

provide a strong additional evidence in favor of inflation.

A non-discovery of B-modes is fine too: many models 

predict gravitational waves with a tiny amplitude.  

BICEP/Keck, LiteBIRD and other experiments

A.A. Starobinsky, Pis'ma Zh. Eksp. Teor. Fiz. 30 (1979) 719

V.A. Rubakov, M.V. Sazhin, A.V. Veryaskin, Phys.Lett.B 115 (1982)

A discovery of inflationary gravitational waves is NOT 

required for proving inflation, but it would be a great gift 

indeed, and not only for inflation, but for investigation of 

quantum gravity and processes at energies many orders 

above LHC.



1) The universe is flat,  = 1. (In the mid-90’s, the consensus was 

that   = 0.3, until the discovery of dark energy confirming inflation.)  

2) The observable part of the universe is uniform (homogeneous). 

3) It is isotropic. In particular, it does not rotate. (Back in the 80’s we 

did not know that it is uniform and isotropic at such an incredible level.)

4) Perturbations produced by inflation are adiabatic

5) Unlike perturbations produced by cosmic strings, inflationary 

perturbations lead to many peaks in the spectrum 

6) The large angle TE anti-correlation (WMAP, Planck) is a distinctive 

signature of superhorizon fluctuations (Spergel, Zaldarriaga 1997), 

ruling out many alternative possibilities



7) Inflationary perturbations should have a nearly flat (but not exactly 

flat) spectrum. A small deviation from flatness is one of the 

distinguishing features of inflation. It is as significant for inflationary 

theory as the asymptotic freedom for the theory of strong interactions

8) Inflation produces scalar perturbations and tensor perturbations 

with nearly flat spectrum, and it does not produce vector 

perturbations. There are certain relations between the properties of 

scalar and tensor perturbations

10) Scalar perturbations are Gaussian. In non-inflationary models, the 

parameter fNL
local describing the level of local non-Gaussianity can be as 

large as 104, but it is predicted to be O(1) in all single-field inflationary 

models. Confirmed by Planck. Prior to the Planck2013 data release, 

there were rumors that fNL
local >> O(1), which would rule out all single 

field inflationary models 

9) In the early 80’s it seemed that inflation is ruled out because scalar 

perturbations are not observed at the expected level 10-3 required for 

galaxy formation. Thanks to dark matter, smaller perturbations are 

sufficient, and they were found by COBE.





a-attractors T-models

a-attractors E-models

Starobinsky model and Higgs inflation



Kallosh, AL, Roest 2013

To match observations, the simplest chaotic inflation model 

should be modified:

Switch to canonical variables

The potential becomes

This model (-attractor T-model) is consistent with observational 

data for m ~ 10-5 and any value of  smaller than O(7).



More generally:

In canonical variables

Asymptotically at large values of the inflaton

Addit ional informat ion can be obtained for the hilltop models. The simplest models

V = V0(1− φ4/ m4) represented by the green band in Fig. 8 of the Planck2018 data release [2]

lead to a universal predict ion ns = 1− 3/ Ne for all sub-Planckian values of the mass parameter

m . 1. This predict ion is strongly disfavored by the Planck2018 data for the number of

e-foldings Ne ⇠ 50− 60. These models could provide a good match to the Planck data for

m & 10. However, in that case they predict post-inflat ionary collapse of the universe, which

cannot be avoided without a substant ial modificat ion of such models, st rongly modifying their

predict ions [3].

More complicated versions of the hilltop models, such as the new inflat ion model with the

Coleman-Weinberg potent ial V ⇠1 + φ4

m4 (2log φ2

m2 − 1), are marginally compat ible with the

Planck2018 data [3], though only for m 1. Now they are strongly disfavored by the results

of the recent BICEP/ Keck data release, as we show in Fig. 2.

New Inflation
(Coleman-Weinberg 
potential)

Figur e 2: Models of the type of new inflat ion [4, 5] based on the Coleman-Weinberg hillt op potent ial are

marginally compat ible with Planck2018 data, but st rongly disfavored by the BICEP/ Keck data [1].

However, one can recover all of these losses by making a relat ively simple generalizat ion

of the kinet ic term of the scalar field. After this generalizat ion, most of the improved models,

which we called “ cosmological at t ractors,” become compat ible with all present ly available

inflat ion-related observat ional data, almost independent ly of the choice of the scalar potent ial

prior to the generalizat ion.

2 ↵ -at t ract ors

2.1 T -models

We will begin with describing ↵-at t ractors [6–12]. The simplest example is given by the theory
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are determined only by two parameters, V0 and ↵, i.e. they do not depend on any other

features of the potent ial V (φ). That is why they are called at t ractors.

T-models for 

f3

f2

0.014

Figur e 3: The figure illust rat ing the main result s of the BICEP/ Keck [1] superimposed with the predict ions

of ↵-at t ractor T -models with the potent ial tanh2n '
p

6↵
[8, 10]. Each of these models starts at some φ2n (at

↵ ! 1 ) and is forced to go down with decreasing ↵ [8] into the area favored by the BICEP/ Keck.

The amplitude of inflat ionary perturbat ions As in these models matches the Planck

normalizat ion for V0

↵ ⇠ 10− 10. For the simplest model V = m2

2
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Here                                    This factor can be absorbed in the 

redefinition (shift) of the field. Therefore, at small  values of 

ns and r depend only on V0 and  not on the shape of V()
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-attractors saving 

monomial potentials



Start with the model

Switch to canonical variables

In particular, for                                the potential becomes

Kallosh, AL, Roest 2014

This model (E-model) coincides with the Starobinsky 

model for  =1. In general case these models predict 



Benchmarks for T-models and E-models

nsns

T-models E-models

String theory interpretation of 7 discrete targets for -attractors

Ferrara, Kallosh 1610.04163. Kallosh, A.L., Wrase, Yamada 1704.04829 



Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey
2202.02773

https://inspirehep.net/literature/2029403


There are many attempts to resolve the disagreement between the 

Planck results and supernova data by considering exotic models of 

dark energy, etc. Some of these attempts require large values of ns, 

all the way to ns = 1.  While this is an exotic possibility, it is better to 

be prepared and consider maximally flexible formulations of 

inflationary models. 



There is a special class of inflationary models where ns = 1 

is an attractor point: Hybrid Inflation
AL 1991, 1994

By increasing the uplifting term                                 one can increase V 

without changing any derivatives of V. Therefore, in the large uplift limit, 

for generic V we have an attractor prediction ns = 1. 

For  = o, it is just the quadratic potential 

uplifted by M4/4

Figur e 1: Hybrid inflat ion potent ial (3.1) for m = 0.2, M = 1, λ = 0.5, g = 0.8.

The e↵ect ive mass squared of the field σ at σ = 0 is equal to

Vσ,σ(σ = 0) = −M 2 + g2φ2 . (3.2)

For φ > φc = M / g the only minimum of the e↵ ect ive potent ial V (σ, φ) with respect to σ is at

σ = 0. The curvature of the e↵ ect ive potent ial in the σ-direct ion is much greater than in the

φ-direct ion. Thus we expect that at the first stages of expansion of the Universe the field σ

rolled down to σ = 0, whereas the field φ could remain large for a much longer t ime.

The potent ial at σ = 0 can be writ ten as

V (σ = 0, φ) = Vup +
m2

2
φ2 , (3.3)

where the uplift ing potent ial is

Vup =
M 4

4λ
. (3.4)

At the moment when the inflaton field φ becomes smaller than φc = M / g, the phase

t ransit ion with the symmet ry breaking occurs. For a proper choice of parameters, this phase

t ransit ion occurs very fast , and inflat ion abrupt ly ends [1, 2]. However, there are some

situat ions where inflat ion may cont inue for a while in the process of spontaneous symmetry

breaking, which may lead to product ion of primordial black holes (PBHs) [29].

Unfortunately, these models are disfavored by the data in most of its parameter space: at
m2

2
φ2 & Vup the tensor-to-scalar rat io is too high, whereas at m2

2
φ2 ⌧ Vup the spectral index

ns is too high: ns > 1 [30].

Once we switch to ↵-at t ractor version of hybrid inflat ion, the first of these problems

disappears. As we will show later, the second problem may also disappear: in the large N

limit these models lead to the standard ↵-at t ractor predict ions (1.1), (1.3). The issue we need

to carefully examine is whether N ⇠ 60 is large enough to be described by the large N limit .

– 6 –

The same conclusion is valid for hybrid -attractors: In two-field 

inflationary models one can increase nS all the way to nS = 1.



1. Many predictions of inflationary theory have been tested and confirmed 

by observations during the last 40 years. 

2. Some inflationary models, such as the Starobinsky model, the Higgs 

inflation, and a broad class of -attractors can describe all available CMB-
inflation-related data by a single parameter. 

3. Predictions of -attractors are stable with respect to significant 

modifications of the inflaton potential. These models can describe any 

small value of r, all the way down to r = 0.

4. BICEP/Keck results are moving close to the range necessary for testing 

tensor modes in these models. LiteBIRD would move us much further.

5. -attractor versions of hybrid inflation can consistently describe a much 

greater range of ns, including ns = 1, which is an attractor value in the large 

uplift regime.

6. Hybrid -attractors can describe copious production of PBH, while 

remaining consistent with the Planck/BICEP/Keck data. 



Uniformity of our universe is explained by 

inflation:   Exponential stretching of the 

universe makes our part of the universe almost 

exactly uniform.

However, the same theory predicts that on a much 

greater scale, the universe can be (and probably 

should be) 100% non-uniform.

Inflationary  universe  becomes a multiverse







If each part of the multiverse is huge, we will never see other parts, so it is 

impossible to prove that we live in the multiverse. 

If each part of the multiverse is huge, we will never see other parts, so it is 

impossible to disprove that we live in the multiverse.

This scenario is more general (otherwise one would need to explain why 

all colors but one are forbidden). Therefore, the theory of the multiverse, 

rather than the theory of the universe, is the basic theory. 

Moreover, even if one begins with a single-colored 

universe, quantum fluctuations make it multi-colored.

I'd rather be an optimist and a fool than a pessimist and right.    Albert Einstein

http://www.goodreads.com/author/show/9810.Albert_Einstein


Independently of the discovery or non-discovery of inflationary tensor 

modes (gravitational waves), scalar modes produced by quantum 

effects in the early universe are already discovered. Numerous attempts 

to propose a non-quantum mechanism of formation of the large-scale 

structure of the universe during the last 40 years failed.

Thus, it is time to take very seriously the assumption that the large-scale 

structure of the universe was formed due to quantum fluctuations.

This is the Cosmological Schrodinger Cat story.









Example:  SUSY landscape

V

SU(5) SU(3)xSU(2)xU(1)SU(4)xU(1)

Weinberg 1982:   Supersymmetry forbids tunneling from SU(5) to 

SU(3)xSU(2)XU(1). This implied that we cannot break SU(5) symmetry. 

A.L. 1983:   Inflation solves this problem. Inflationary fluctuations bring us to 

each of the three minima. Inflation makes each of the parts of the universe 

exponentially large. We can live only in the  SU(3)xSU(2)xU(1)  minimum.

Supersymmetric SU(5)



Kandinsky  Universe



Physicists can live only 

in those parts of the 

multiverse where 

mathematics is efficient 

and the universe is 
comprehensible.
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