IceCube: the First Decade of Neutrino Astronomy francis halzen

- neutrino astronomy and the origin of cosmic rays
- IceCube
- the cosmic neutrino energy spectrum
- first sources of high energy neutrinos
- and the answer is: supermassive black holes at the "dense" cores of active galaxies ?

IceCube.wisc.edu

highest energy "radiation" from the Universe: cosmic rays, mostly protons

the Extreme Universe is opaque to gamma rays beyond our Galaxy

photon energy in the Universe as a function of color

in the extreme universe neutrinos are unique astronomical messengers

the opaque extreme Universe:

$\gamma + \gamma_{\text{EBL}} \rightarrow e^+ + e^-$

- > PeV photons interact with extragalactic background light (CMB and higher energy photons) before reaching our telescopes
- their energy appears reprocessed in GeV photons, or beyond

neutrinos: perfect messengers

- electrically neutral
- massless (in this talk)
- like a photon but weakly interacting
- track cosmic ray sources
- ... but difficult to detect

v and γ beams : heaven and earth

accelerator is powered by large gravitational energy

L-supermassive black hole

nearby radiation

 $p + \gamma \rightarrow n + \overline{\pi^{+}}$ $\pi^{+} \rightarrow \mu^{+} + \overline{\nu_{\mu}}$ $\rightarrow p + \overline{\pi^{0}}$ $\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}}$ $\pi^{0} - (\gamma + \gamma)$

black hole accelerating protons submersed in a target of radiation produce pions

 π^+ –

 π^0

 $\stackrel{+}{\longrightarrow} \mu^{+} + (\nu_{\mu})$ $\stackrel{-}{\longrightarrow} e^{+} + e^{-i\theta}$

45

 u_e

JXK

Je

P.

π

W///

2

SHOCK WAVE

cosmic ray sources: a gamma ray for every neutrino

 $\gamma + \gamma \simeq \nu_{\mu} + \bar{\nu}_{\mu}$ $E_{\gamma} = 2 E_{\nu}$

neutrino sources are cosmic ray sources

- neutrino astronomy and the origin of cosmic rays
- IceCube
- the cosmic neutrino energy spectrum
- first sources of neutrinos
- and the answer is: supermassive black holes at the cores of active galaxies

IceCube.wisc.edu

10,000 times too small to do neutrino astronomy...

IceCube: 5160 photomultipliers instrument one km³ of Antarctic ice between 1.4 and 2.4 km depth as a Cherenkov detector

- muon produced by
 neutrino near IceCube
- comes through the Earth
- 2,600 TeV inside detector
- not atmospheric

neutrinos interacting inside the detector

15 Jan 201

muon neutrinos filtered by the Earth

superior total energy measurement to 10%, all flavors, all sky

superior angular resolution 0.3° including systematics

- oscillations of PeV neutrinos over cosmic distances to 1:1:1
 - high energy (> PeV) nutau neutrinos are of cosmic origin

Astrophysical Tau Neutrino Search

- <u>TeV</u> O(1) <u>PeV</u> Tau neutrinos look like Electron neutrinos due to sparse instrumentation
- Differentiation by shape of waveform in a given module, i.e. two waveforms in the same module offset by a certain quantity
- Create an image (2D histogram) of the charge distribution in time along a string
- CNN used to find the subtle difference in waveform shapes

→ Standard Model: 8 expected on a background of 1 and 7 found for a flavor ratio 1:1:1

Glashow resonance event with energy 6.3 PeV

resonant production of a weak intermediate boson by an antielectron neutrino interacting with an atomic electron

 $E_R = M_W^2 / [2m_e]$ $= 6.32 \,\mathrm{PeV}$

- energy measurement understood
- shower consistent with the hadronic decay of a weak intermediate boson W
- identification of anti-electron neutrino
- SM cross section known \rightarrow measure flux

in the extreme universe the energy in neutrinos is larger than the energy in gamma rays observed at GeV energies

energy in neutrinos (and accompanying gamma rays) dominates?

• gamma rays from π^0 accompanying IceCube neutrinos interact with interstellar photons and fragment into multiple lower energy gamma rays that reach earth

 e^{+}

e

• they appear at MeV energies, or below [2205.03740 ph.HE]

$\gamma + \gamma_{\rm CMB} \not\rightarrow e^+ + e^-$

 e^+

e⁻

X

gamma rays from neutral pions must lose energy in the sources if not, they would dominate the Fermi IGRB

2205.03740 [astro-ph.HE]

 10^{8}

energy in neutrinos in the Universe determined by the turnover at low energies:

starting event and starting track analyses track analyses

Cascade 6 year

HESE 7.5 year

10⁶

107

i∰i

NS Tracks 9.5 year

166 neutrino starting events

where is the neutrino Galactic plane?

by geometry the flux from your own Galaxy should dominate the diffuse flux from all other galaxies combined!

maximum likelihood: point source template \rightarrow Fermi GeV Galactic plane data as template \rightarrow match with a P-value of 4.2 σ

Fermi (GeV gamma rays) and IceCube (TeV neutrinos) see the same Galactic plane

neutrinos produced in Galactic cosmic rays interactions with interstellar medium

- populate all galaxies in the Universe with neutrino sources
- seen from Earth you should see the sources in your own galaxy first; this is geometry
- the Milky Way should dominate the sky, as is the case for all wavelengths of light

 \rightarrow powerful accelerators operate in other galaxies that do not exist in our own

→ our supermassive black hole has not been active for a few million years?

 in the extreme universe more energy is emitted in neutrinos than in gamma rays

- the π⁰ photons accompanying cosmic rays appear at MeV energy, or below
- powerful accelerators operate in other galaxies that do not exist in our own
- [our supermassive black hole has not been active for a few million years?]

- neutrino astronomy and the origin of cosmic rays
- IceCube
- the cosmic neutrino energy spectrum
- first sources of neutrinos
- and the answer is: supermassive black holes at the cores of active galaxies

IceCube.wisc.edu

IceCube neutrinos >100 GeV (one year shown) (reaches neutrino purity of > 97% but overwhelmingly atmospheric)

- maximize the (model agnostic) likelihood L at each point in the sky
- usually, add energy term to the signal likelihood S

N	<u>C</u> 1	- [d]			<u>^</u>	l	4	1	PKS B1130+008	BLL	173.20	0.58	15.8	4.0	0.96	4.4
Iname	Class	α [deg]	<i>o</i> [deg]	n_s	<u>γ</u> -	$\log_{10}(p_{local})$	$\varphi_{90\%}$	-	Mkn 421	BLL	166.12	38.21	2.1	1.9	0.38	5.3
PKS 2320-035	FSRQ	350.88	-3.29	4.8	3.6	0.45	3.3		4C + 01.28	BLL	164.61	1.56	0.0	2.9	0.26	2.4
3C 454.3	FSRQ	343.50	16.15	5.4	2.2	0.62	45.1		1H 1013+498	BLL	153.77	49.43	- 0.0	2.6	0.29	- 4.5
TXSPARCI	FSFQ	TAP		<u>38</u> 1	(Ban S	S MAT 1	56	nres	elected	Sa	1942	-5568'	and		nates	10.6
RGB J2243+203	BLL	340.99	20.36	0.0	3.0	0.33	3.1	P100	M 82	SBG	148.95	69.67	0.0			8.8
CTA 102	FSRO	338.15	11.73	0.0	2.7	• 0 . 30	2.8		PMN J0948+0022	AGN	147.24	0.37	9.3	$\frac{2.0}{4.0}$	0.76	3.9
BL Lac	BLL	330.69	42.28	0.0	27	hinto	e int			BLL	133 71	20.12	0.0	2.6	0.32	3.5
OX 160	FSRO	325.80	17.20	2.0	1.7		וש כ	3001	$PKS 0829 \pm 046$	BLL	127.97	4 49	0.0	2.9	0.28	2 1
$D_{2} 0114 + 22$	DII	210.06	22.66	2.0	2.0.	0.03	2.0		- 54.0814 + 42 - 10	BLL	124.56	42.38	0.0	2.3	0.30	4 9
$D_{2} 2114 \pm 33$	DLL	319.00	10.04	0.0	Dh	ις Ροι		++ 17	A (2020)	BLL	122.87	1 78	16.1	4.0	0.99	4 4
PKS 2032+107	FSRQ	308.85	10.94	0.0	Z .4 I Y	2111CI	V. <u>L</u> AC	ιι. ΙΖ		BLL	122.01 122.46	52.31	0.0	2.8	0.31	4.7
2HWC J2031+415	GAL	307.93	41.51	13.4	3.8	0.97	9.2		PKS 0736 ± 01	FSRO	114.82	1.62	0.0	2.8	0.26	2.4
Gamma Cygni	GAL	305.56	40.26	7.4	3.7	0.59	6.9		PKS $0735+17$	BLL	114.54	17.71	0.0	2.8	0.30	3.5
MGRO $J2019+37$	GAL	304.85	36.80	0.0	3.1	0.33	4.0		4C + 14.23	FSRO	111.33	14.42	8.5	2.9	0.60	4.8
MG2 J201534+3710	FSRQ	303.92	37.19	4.4	4.0	0.40	5.6		S5 0716+71	BLL	110.49	71.34	0.0	2.5	0.38	7.4
MG4 J200112+4352	BLL	300.30	43.89	6.1	2.3	0.67	7.8		PSR B0656+14	GAL	104.95	14.24	8.4	4.0	0.51	4.4
1 ES 1959 + 650	BLL	300.01	65.15	12.6	3.3	0.77	12.3		1ES 0647 + 250	BLL	102.70	25.06	0.0	2.9	0.27	3.0
1RXS J194246.3+1	BLL	295.70	10.56	0.0	2.7	0.33	2.6		$B3\ 0609+413$	BLL	93.22	41.37	1.8	1.7	0.42	5.3
RX J1931.1+0937	BLL	292.78	9.63	0.0	2.9	0.29	2.8		Crab nebula	GAL	83.63	22.01	1.1	2.2	0.31	3.7
NVSS J190836-012	UNIDR	287 20	-1 53	0.0	2.9	0.22	2.3		OG + 050	FSRO	83.18	7.55	0.0	3.2	0.28	2.9
MCBO 11008+06	GAL	287.20 287.17	6.18	4.2	2.0	1.42	57		TXS 0518+211	BLL	80.44	21.21	15.7	3.8	0.92	6.6
TXS 1002 + 556	DII	201.11	55.69	4.4	2.0	0.85	0.0		TXS 0506+056	\mathbf{BLL}	77.35	5.70	12.3	2.1	3.72	10.1
1A5 1902+550	DLL	205.00	0.00	11.1	4.0	0.65	9.9		PKS 0502+049	FSRQ	76.34	5.00	11.2	3.0	0.66	4.1
HESS $J1857 + 026$	GAL	284.30	2.67	(.4	3.1	0.53	3.5		S3 0458-02	FSRQ	75.30	-1.97	5.5	4.0	0.33	2.7
GRS 1285.0	UNIDB	283.15	0.69	1.7	3.8	0.27	2.3		PKS 0440-00	FSRO	70.66	-0.29	7.6	3.9	0.46	3.1
HESS J1852-000	GAL	283.00	0.00	3.3	3.7	0.38	2.6		MG2 J043337+2905	BLL	68.41	29.10	0.0	2.7	0.28	4.5
HESS J1849-000	GAL	282.26	-0.02	0.0	3.0	0.28	2.2		PKS 0422+00	BLL	66.19	0.60	0.0	2.9	0.27	2.3
HESS J1843-033	GAL	280.75	-3.30	0.0	2.8	0.31	2.5		PKS 0420-01	FSRQ	65.83	-1.33	9.3	4.0	0.52	3.4
OT 081	BLL	267.87	9.65	12.2	3.2	0.73	4.8		PKS 0336-01	FSRQ	54.88	-1.77	15.5	4.0	0.99	4.4
S4 1749+70	BLL	267.15	70.10	0.0	2.5	0.37	8.0		NGC 1275	AGN	49.96	41.51	3.6	3.1	0.41	5.5
1H 1720+117	BLL	261.27	11.88	0.0	2.7	0.30	3.2		NGC 1068	SBG	40.67	-0.01	50.4	3.2	4.74	10.5
PKS 1717+177	BLL	259.81	17 75	19.8	3.6	1.32	7.3		PKS 0235+164	BLL	39.67	16.62	0.0	3.0	0.28	3.1
Mkn 501	BLL	253.01	30.76	10.3	4.0	0.61	73		4C + 28.07	FSRQ	39.48	28.80	0.0	2.8	0.30	3.6
4C + 28.41	ESDO	200.41	39.10 29.14	4.9	4.0	0.01	7.0		3C 66A	BLL	35.67	43.04	0.0	2.8	0.30	3.9
40 + 30.41	PIL	240.02	30.14	4.2	2.5	0.00	7.0		B2 0218+357	FSRQ	35.28	35.94	0.0	3.1	0.33	4.3
PG 1553+113	BLL	238.93	11.19	0.0	2.8	0.32	3.2		PKS 0215+015	FSRQ	34.46	1.74	0.0	3.2	0.27	2.3
GB6 J1542 + 6129	BLL	235.75	61.50	29.7	3.0	2.74	22.0		MG1 J021114+1051	BLL	32.81	10.86	1.6	1.7	0.43	3.5
B2 1520 $+31$	FSRQ	230.55	31.74	7.1	2.4	0.83	7.3		TXS 0141+268	BLL	26.15	27.09	0.0	2.5	0.31	3.5
PKS $1502 + 036$	AGN	226.26	3.44	0.0	2.7	0.28	2.9		B3 0133+388	BLL	24.14	39.10	0.0	2.6	0.28	4.1
PKS 1502+106	FSRQ	226.10	10.50	0.0	3.0	0.33	2.6		NGC 598	SBG	23.52	30.62	11.4	4.0	0.63	6.3
PKS 1441+25	\mathbf{FSRQ}	220.99	25.03	7.5	2.4	0.94	7.3		S2 0109+22	BLL	18.03	22.75	2.0	3.1	0.30	3.7
PKS 1424+240	\mathbf{BLL}	216.76	23.80	41.5	3.9	2.80	12.3		4C + 01.02	\mathbf{FSRQ}	17.16	1.59	0.0	3.0	0.26	2.4
NVSS J141826-023	BLL	214.61	-2.56	0.0	3.0	0.25	2.0		M 31	SBG	10.82	41.24	11.0	4.0	1.09	9.6
B3 1343 ± 451	FSRO	206.40	44.88	0.0	2.8	0.32	5.0		PKS 0019+058	BLL	5.64	6.14	0.0	2.9	0.29	2.4
84 1250 + 53	BLL	193.31	53.02	2.2	$\frac{1}{2}$ 5	0.39	59		PKS 2233-148	BLL	339.14	-14.56	5.3	2.8	1.26	21.4
$PC 1246 \pm 586$	BLL	102.08	58.34	0.0	2.0	0.35	6.4		HESS J1841-055	GAL	280.23	-5.55	3.6	4.0	0.55	4.8
$MC1 I199091 \pm 0449$	ESDU	192.00	4 79	0.0	2.0	0.35	0.4		HESS J1837-069	GAL	279.43	-6.93	0.0	2.8	0.30	4.0
MG1 J123931+0443	LON	109.09	4.70	0.0	2.0	0.28	2.4		PKS 1510-089	FSRO	228.21	-9.10	0.1	1.7	0.41	7.1
	AGN	107.71	12.39	0.0	2.0	0.29	3.1		PKS 1329-049	FSRO	203.02	-5.16	6.1	2.7	0.77	5.1
ON 246	BLL	187.56	25.30	0.9	1.(0.37	4.2		NGC 4945	SBG	196.36	-49.47	0.3	2.6	0.31	50.2
3C 273	FSRQ	187.27	2.04	0.0	3.0	0.28	1.9		3C 279	FSRO	194.04	-5.79	0.3	2.4	0.20	2.7
4C + 21.35	\mathbf{FSRQ}	186.23	21.38	0.0	2.6	0.32	3.5		PKS 0805-07	FSRO	122.07	-7.86	0.0	2.7	0.31	4.7
W Comae	BLL	185.38	28.24	0.0	3.0	0.32	3.7		PKS 0727-11	FSRQ	112.58	-11.69	1.9	3.5	0.59	11.4
PG 1218+304	BLL	185.34	30.17	11.1	3.9	0.70	6.7		LMC	SBG	80.00	-68.75	0.0	3.1	0.36	41.1
PKS 1216-010	BLL	184.64	-1.33	6.9	4.0	0.45	3.1		SMC	SBG	14.50	-72.75	0.0	2.4	0.37	44.1
B2 1215+30	BLL	184.48	30.12	18.6	3.4	1.09	8.5		PKS 0048-09	BLL	12.68	-9.49	3.9	3.3	0.87	10.0
Ton 599	FSRQ	179.88	29.24	0.0	2.2	0.29	4.5		NGC 253	SBG	11.90	-25.29	3.0	4.0	0.75	37.7

pre-trial p-value for clustering of high energy neutrinos

- hottest spot coincident with NGC 1068
- also hottest spot in the sources list (2.9σ)

statistical fluctuations or neutrino sources?

interesting fluctuations or neutrino sources?

- improved detector geometry
- each photomultiplier calibrated individually
- improved characterization of the optics of the ice
- improved muon angular resolution and energy reconstruction using machine learning
- point spread function consistent with simulation or, we were partially blind

applied to 10 years of archival data (pass 2), data unblinded, result ...

Understanding the detector

- More data \rightarrow more precise measurement \rightarrow more sensitivity to systematics
- Constant refinement of the detector knowledge

Light propagation

Refrozen "hole" ice properties

DOM response

- point spread function consistent with simulation
- insensitive to systematics

- ▶ Rayleigh (1D-projection of 2D Gauss) doesn't describe our Monte Carlo accurately → Tails are suppressed
- The distribution depends on the spectral index!
- Effect mainly visible at < 10 TeV energies where the kinematic angle between neutrino and muon matters
- Solution: Obtain a numerical representation of the V-dependent spatial term from MC simulation (for example using KDEs)

$$\frac{1}{2\pi\sigma^2}e^{-\frac{\psi^2}{2\sigma^2}} \to \mathcal{S}\left(\psi \,|\, \sigma, \, E_{\mu}, \, \gamma\right)$$

Virtual Collaboration Meeting, 2020-09-22

pre-trial p-value for clustering of high energy neutrinos

- hottest spot coincident with NGC 1068
- also hottest spot in the sources list (2.9σ)

statistical fluctuations or neutrino sources?

the new IceCube neutrino map: hottest spot

1% of scrambled data sets have a spot \geq 5.3 σ

is the hot spot coincident with one of the 110 preselected sources?

X-ray vs neutrino flux

- hint from NGC 1068
- a correlation between the X-ray and neutrino flux of active galaxies producing neutrinos?
- X-ray flux of TXS 0506+056 is consistent with this pattern: neutrinos are produced in the core, not the jet

(Emma Kun et al., Neronov et al.)

The Emergence of a new class of sources?

→ 2022 Evidence for Neutrino Emission from NGC 1068 (Science) Binomial analysis TXS 05060 and PKS 1420

→ 2024: IceCube Search for Neutrino Emission from X-ray Bright Seyfert Galaxies Northern sky NGC 4151 and CGCG 420-015 arXiv:2406.07601

→ 2024 Starting event search for Seyfert galaxies TeVPA 2024 Circinus

→ 2024 Search for neutrino emission from hard X-ray AGN with IceCube NGC 4151 arXiv:2406.06684

→ 2024 Binomial excess from 12 X-ray bright Seyferts (update)

multimessenger astronomy with X-ray sources

more sources ...

 two brightest active galaxies discovered by Seyfert in 1943

NUCLEAR EMISSION IN SPIRAL NEBULAE*

CARL K. SEYFERT[†]

1943

ABSTRACT

Spectrograms of dispersion 37–200 A/mm have been obtained of six extragalactic nebulae with highexcitation nuclear emission lines superposed on a normal G-type spectrum. All the stronger emission lines from λ 3727 to λ 6731 found in planetaries like NGC 7027 appear in the spectra of the two brightest spirals observed, NGC 1068 and NGC 4151.

Binomial Test

binomial test of X-ray bright Seyfert galaxies

sub-leading sources: binomial analysis

now 3.4 σ p-value

IceCube 170922 290 TeV

from light in the ice to astronomer in less than one minute

IceCube 170922 290 TeV Fermi detects a flaring blazar within 0.06° original GCN Notice Fri 22 Sep 17 20:55:13 UT 10 refined best-fit direction IC170922A 5.6° 9 IC170922A 50% - area: 0.15 square degrees IC170922A 90% - area: 0.97 square degrees 8 GeV 6.2° 6 Λ 5.8° Counts 5 5.4° Fermi 3 2 5.0° PKS 0502+049 3FHL 0 0 3FGL 4 6 77.6° 77.2° 78.4° 78.0° 76.8° 76.4° **Right Ascension**

MASTER robotic optical telescope network: observing within 73 seconds optical flash after 2 hours: highest statistical association of TXS 0506 with IC170922

Follow-up detections of IC170922 based on public telegrams

"MASTER found the blazar in the off-state after one minute and then switched to onstate two hours after the event. The effect is observed at a 50-sigma significance level"

optical flashes may originate from magnetohydrodynamical instabilities triggered by processes modulated by the magnetic field of the accretion disk

- neutrino astronomy and the origin of cosmic rays
- IceCube
- the cosmic neutrino energy spectrum
- first sources of neutrinos
- and the answer is: supermassive black holes at the dense cores of active galaxies?

IceCube.wisc.edu

NGC 1068

Hydrogen clouds near AGN core

Obscured Core

a gamma ray for every neutrino?

NGC 1068: an obscured cosmic accelerator

gamma-ray-obscured corona: gas and radiation

black hole

accretion disk

- accelerator(s): electrons and protons are accelerated in the turbulent magnetic fields associated with the accretion disk, in the infall onto the black hole,...
- target: the neutrinos are produced in the optically thick core with a high density of gammas (corona X-rays) and dense clouds of hydrogen (protons)

AGN: INSIDE AND OUT

AGN: INSIDE AND OUT

cores of active galaxies

target densities required

- to produce the neutrino flux
- to suppress the flux of the accompanying gamma ray from π⁰s

requires a target density only found within < 100 Schwarzschild radii of the black hole

NGC 1068 core: large optical depth in photons (X-ray) and matter

neutrinos originate within 10~10² Schwarzschild radii from the BH

neutrino astronomy 2024

- it exists
- more neutrinos, better neutrinos, more telescopes
- closing in on cosmic ray sources a century after their discovery

icecube.wisc.edu

Uncharted Territory

Uncharted Territory

- Significant event observed with huge amount of light
- Horizontal event (1° above horizon) as expected since earth opaque to neutrinos at PeV scale
- 3672 PMTs (35%) were triggered in the detector
- Muons simulated at 10 PeV almost never generate this much light

Likely multiple 10's of PeV

Uncharted Territory

- Light profile consistent with at least 3 large energy depositions along the muon track
- Characteristic of stochastic losses from very high energy muons

Event 132379/15947448-2 Time 2019-03-31 06:55:43 UTC Duration 22596.0 ns

IceCube Preliminary

IceCube's Highest Energy Event:

THE ICECUBE COLLABORATION

ALIA 1

NGC 1068 core: large optical depth in photons (X-ray) and matter

neutrinos originate within 10~10² Schwarzschild radii from the BH