
UHE Cosmic Rays and Neutrinos 
From AGN Jets

Damiano Caprioli 
University of Chicago 

GSSI - L’Aquila  
October 2, 2024

with: R. Mbarek (UMaryland), K. Murase (Penn State)



Extra-galactic Cosmic Rays
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Extra-Gal 

Hillas criterion favors the origin of UHECRs 
in relativistic objects



Acceleration at Relativistic Shocks
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Energy gain depends on  

Following cycles:  

CAVEAT: return not guaranteed!

μi, μf

ℰ ∼ 2

UpstreamDownstream

𝜗

Γ

μi=-cos𝜗i

x

y

First cycle:  (~Compton scattering)ℰ ≡
Ef

Ei
∼ Γ2

μf

Encounter with the shock: 

in the downstream frame: 

Elastic scattering (e.g., gyration): 

Back in the upstream:

E.g., Vietri 1995



Acceleration in Relativistic Flows
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Laboratory (Downstream)

Requirement: interface thickness << gyroradius << typical flow size

Most trajectories lead to a  energy gain!∼ Γ2

𝜗

Flow (Upstream)

Γ



Espresso Acceleration of UHECRs
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 SEEDS: galactic CRs  up to  

 STEAM: AGN jets with Γ up to 20-30

Eknee ∼ 3Z × 1015eV

Hercules A

ONE-SHOT 
reacceleration can 

produce UHECRs up to
 Emax ∼ 2Γ2 Eknee

Emax ∼ 5Z × 1018eV

galactic-CR halo

Caprioli 2015



UHECRs from AGN jets: constraints
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Confinement (Hillas Criterion): 

Energetics: QUHECR(E≳1018eV)≈5x1045erg/Mpc3/yr  

Lbol ≈ 1043-1045erg/s;   NAGN≈10-4/Mpc3                                   

QAGN ≈ a few 1046-1048erg/Mpc3/yr >> QUHECR 

 Reacceleration efficiency required: 

  in energy;  

 A jet with opening angle of a few degrees                                                         
reprocesses  of the seeds 

Contributing AGNs 

Likely radio-loud quasars, blazars, FR-I,…

η ≳ 10−4

∼ 1 %

✔

✔



Galactic CR + UHECR spectrum
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Prediction for  UHECR chemical composition! 

What kind of AGN can contribute? 

Enough sources within the horizon? 

What if a few (e.g., FR-I galaxies) ?  

Expected anisotropy?

Γ ∼

Knee

Caprioli 2015, 2018

Ankle Cut-off
Auger 2020



Testing Espresso Acceleration
Propagation of test particles in 3D RMHD simulations with Pluto (Mbarek & Caprioli19)
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Effective Lorentz factor: Γeff ≈ 3.2

Espresso works for of the Galactic CR seeds 

 Two-shot acceleration ( ) is also possible!  

> 1 %

ℰ ≳ Γ4
Mbarek & DC 2019



Spectra and Anisotropy 

Espresso acceleration occurs up to the Hillas limit 

First tested bottom-up mechanism for UHECRs 

Re-accelerated UHECRs released almost isotropically 

Weak dependence on the sign of Bϕ
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Astro implications of 3D RMHD simulations:  

Multiple espresso shots allow FR-I galaxies with 
few (e.g., Cen A) to be UHECR sources, too 

Even non-blazar AGNs may contribute to the 
UHECR flux at Earth 

Γ ∼

α =
rg

Rjet
=

E
qB0

1
Rjet

Mbarek & DC 2019



Espresso vs Stochastic Shear Acceleration

Shear acceleration at the jet-cocoon layer proposed as 
source of UHECRs (e.g., Ostrowski 1998, 2000; Kimura+2018) 

depends on poorly-know scattering rate 

Added sub-grid Monte Carlo scattering to our RMHD 

jet with      (   Bohm diffusion) 

Scattering fosters acceleration of low-energy seeds 

The Hillas limit only achieved via espresso!  

Overall spectrum becomes flatter

τscatt =
κ

Ωc
κ = 1 →

10Mbarek & Caprioli 2021



ESPRESSO ACCELERATION and UHE neutrinos



UHECR attenuation in realistic AGNs
Included loss mechanisms for UHE protons and nuclei: 

CR - p collisions 

CR -  collisions (nuclei photodisintegration)γ
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Mbarek, Caprioli & Murase 2022 

Technically challenging & dependent on the AGN photon fields 

Non-thermal emission (dominant), Broad-Line Region, dusty torus IR, CMB, starlight, … 

Even maximizing losses, UHECR composition should remain heavy at the highest energies 

because espresso acceleration happens far from the jet basis



UHECRs

Expected Flux of UHE Neutrinos from AGNs
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Mbarek, Caprioli & Murase 2023 

3 channels for UHE neutrinos: 

CR - p collisions 

CR -  collisions (nuclei photodisintegration) 

-decay of secondary nuclei (novel)

γ

β

AGN contribution may dominate cosmogenic neutrino flux for GeV (ANITA, ARA, POEMMA) 

IceCube neutrinos (  GeV ) may come from -decay of secondary nuclei  

Due to the role of non-thermal , possible correlation with AGN flares (e.g., TXS0506+056) 

E > 107

E ∼ 103 − 106 β

γ

-decayβ

CR-γ



UHE CRs and Neutrinos from Cen A

Auger24: 3-25% of UHECR flux 
from Cen A consistent with 
observed spectrum + composition 
+ anisotropy 

Cen A can be a UHECR source, but 
not powerful enough to be typical 

Estimated source neutrino flux 
from such UHECRs quite low
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Centaurus A: closest AGN (FR-I, ~4Mpc,  erg/s)Lbol ≲ 1044

Mbarek, Caprioli & Murase, subm.



Origin of CR Chemical Composition



Injection and Acceleration of Heavy Nuclei  

Spectra result from balance between acceleration and 
collisional losses: heavy ions should have steeper spectra! 

dN
dE

∝ E−(1+τa/τL)



Chemical Composition of Galactic CRs - I
 Similar to solar at low energies (Simpson 1983); All species have the same spectral slope 
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Biermann & Sigl, 2002

Chemical Composition of Galactic CRs - II
Depends on volatility (refractory vs volatile elements), on 
atomic mass A, on first ionization potential… 

Above ~1 TeV, fluxes of H, He, CNO, and Fe are comparable
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Meyer, Drury & Ellison 1997

[H/Fe]solar>104

[H/Fe]CR<10

Dembinski+17

Heavy nuclei must be injected more efficiently than H!



Hybrid Simulations
M=10, parallel shock, with singly-ionized nuclei (DC, Yi, Spitkovsky 2017)
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H

D

He



Hybrid Simulations with Heavy Ions

Quasi-parallel shock, M=20 
Ion DSA when proton DSA! 
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DC, Yi & Spitkovsky, 2017
Post-shock Ti scales with Ai 

Emax,i scales with Zi 

The tail normalization scales with (Ai/Zi)2 

Explains CR chemical enhancements!



A Summary
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Origin Sources Mechanism Emax Spectrum Evidence

Galactic
SNRs; 
Star 

clusters?

Diffusive 
Acceleration at 
non-rel shocks 

3Zx106 GeV? Universal ～E-2
gamma rays 
e.g., Tycho

Extragal AGNs Espresso  
in rel flows?

5Zx109 GeV Galactic, boosted Anisotropy? 
Neutrinos?



Honoring Venia Berezinsky 
No Wikipedia page, except a very simple one in German: This is ridiculous!
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