

Latest results from the Telescope Array

P. Tinyakov¹ for the Telescope Array Collaboration

¹Université Libre de Bruxelles, Bruxelles, Belgium

Conference in memory of Veniamin Berezinsky L'Aquila, October 1-3, 2024

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

- ロ ト 4 昼 ト 4 匡 ト 4 亘 - つへで

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

Photos by **N.Nolde,** INR, 2010.

Outline

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

(日)(四)(四)(四)(四)(四)

UHECR experiments

コト《卽》《돈》《돈》 돈 '오�'

USA

Japan

Korea

Telescope Array Collaboration

E.U. Same, M. And, T. Karolawa, M. Anne, H. Same, H. Same, W. Bar, D.R. Barnawa, S. A. Bar, H. C. Conf, R.C. Conf, J. Cano, Y. Leo, Y. Leo, Y. Leo, K. P. Leo, K. D. Char, S. Chart, S. Leo, K. J. Chart, J. K. Barnawa, Y. Barnawa, H. S. Karo, Y. Leo, K. Same, Y. Same, Y. Leo, Y. Leo, K. Same, Y. Same, Y. Leo, Y. Leo, K. Same, Y. Same, Y. Leo, Y. Leo, K. Same, Y. Leo, Y.

High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Soil Lake City, Utah, USA The Graduate School of Science and Envineering, Salama University Salama Salama Jaran Graduate School of Science and Engineering, Takyo Institute of Technology, Meguro, Tokyo, Japan partment of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-ga, Seoul, Korea Department of Physics, Tokyo University of Science, Noda, Chiba, Japan ⁶Department of Physics, Kindai University, Hipathi Osaka, Osaka, Japan ⁷Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium The Bakabi Centre for Advanced Research and Graduate School of Science, Kyoto University Kitashirakawa Obuskecho, Sabyo ka, Kyoto Japan ⁹Institute for Counic Ray Research, University of Tokyo, Kashiwa, Chiba Japan ²⁰Graduate School of Science, Osaka City University, Osaka, Osaka, Japan Kavil Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokya, Kaviwa, Chiba, Jacon Information Engineering Graduate School of Science and Technology, Shinahu University Nagano, Nagano, Japan 13 Faculty of Engineering, Kanapawa University, Yokohama, Kanapawa, Japan Interdisciplinary Graduate School of Medicine and Engineering, University of Xamanashi, Kofa, Yamanashi, Japa 15 Earthquake Research Institute, University of Tokyo, Bank yo ku, Tokyo, Japan Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan Department of Physics, Sandyunkwan University, Jano an ou, Savon, Korea 19 Department of Physics, Tokyo City University, Setagaya ku, Tokyo, Japan ²⁰Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ²¹Faculty of Systems Engineering and Science, Shibaara Institute of Technology, Minato-ka, Tokyo, Japan surtment of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Newayawa-shi, Osaka, Japan 23 Department of Physics Chiba University Chiba Chiba Jawa Department of Physics, Yonsei University, Seodaeman-ga, Seoal, Korea ²⁵Faculty of Science, Kochi University, Kochi, Kochi, Japan ambu Yaichiro Institute of Theoretical and Experimental Physics, Osaka City University Osaka, Osaka, Japan ²⁷Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shipa, Japan Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ka, Tokyo, Japan ³⁹Stambers Astronomical Institute, Moscow M.V. Lononorow State University, Moscow, Russia Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-pil, Ulsan, Korea ³¹ Department of Physics and Astronomy Rutgers University - The State University of New Jersey, Placataway New Jersey, USA ¹²Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan ¹³Institute of Particle and Nuclear Studies, KEK, Tsukaba, Ibaraki, Japan ³⁴National Institute of Radiological Science, Chiba, Chiba, Japan

³⁸Kational betitute of Radological Science, Chilto, Chilo, Lapon ³⁰CEECO, Institute of Physics, Coch Academy of Sciences, Prague, Cycch Republic: ⁵⁶Department of Physics and Institute of the Early University, Hondaneous pa, Seoul, Koresa ³⁰Department of Physics, Ehine University, Matroyama, Ehine, Japan

Russia

Belgium

Czech Republic

Slovenia

145 members, 32 institutes, 7 countries

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

TA:

- 507 scintillator detectors covering 680 km², 1.2 km spacing
- 38 fluorescence telescopes in 3 towers
- operational since March 2008

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

Black Rock Mesa

TALE (low energy extension):

- 103 scintillator detectors same as TA, 400 – 600 m spacing, 70 km²
- 10 fluorescence telescopes looking high, 30° – 59°

1.2 km spacir 27 SDs

TA-SD array

400 m spacing 40 SDs

> 600 m spacing 36 SDs

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary &

TAx4:

- SD: 257 scintillator detectors (half of the planned), 2.08 km spacing, ~ 1000 km²; data taking since Nov 2019
- FD: 2 fluorescence towers, North (data taking since June 2018) and South (data taking since Sept 2020)

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment Spectrum Composition Anisotropy Summary & Outlook

TAx4:

- SD: 257 scintillator detectors (half of the planned), 2.08 km spacing, ~ 1000 km²; data taking since Nov 2019
- FD: 2 fluorescence towers, North (data taking since June 2018) and South (data taking since Sept 2020)

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment Spectrum Composition Anisotropy Summary & Outlook

TAx4:

- SD: 257 scintillator detectors (half of the planned), 2.08 km spacing, ~ 1000 km²; data taking since Nov 2019
- FD: 2 fluorescence towers, North (data taking since June 2018) and South (data taking since Sept 2020)

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment Spectrum Composition Anisotropy Summary & Outlook

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

SPECTRUM

・ロト・日・・ヨ・・ヨ・ クタの

TA spectrum

TA measures spectrum by several techniques:

- Fluorescence detector (FD-mono) at three stations independently + in stereo mode (FD-stereo)
- Surface detector (SD) largest statistics
- Hybrid (SD+FD) used for calibration
- Cherenkov light TALE lowest threshold
- All spectra agree after rescaling of SD energies down by 1.27
- \implies CR spectrum over nearly 5 decades

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

Combined spectrum from TA + TALE:

- ロ ト 4 昼 ト 4 匡 ト 4 匡 - りへで

TA spectrum update

"Shoulder" above 10¹⁹ eV

- first observed by Auger
- ▷ position of the shoulder: 10^{19.20±0.03} eV
- \triangleright significance 6.5 σ
- \triangleright consistent with Auger at 1.2 σ

Declination dependence of the spectrum

- Solution of the difference is estimated as 4.4σ
- no instrumental cause was identified
 astrophysical origin is likely

▶ < 母 > < 三 > < 三 > < 三 > < ○への</p>

TALE mono & hybrid (ICRC2023)

TAx4 3 yrs of data

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

COMPOSITION

・ロト・西・・川・・日・・日・ シック

TALE FD monocular data 2014-2022

Tareg AbuZayyad @ ICRC2023

from the

Composition in TALE FD monocular data 2014-2022

- energy range $\log(E) = 15.2 18$
- bins of 0.1 in log(E)
- in each bin fit the data X_{max} distribution with the sum of MC distributions for 4 primaries: proton, He, nitrogen (CNO), Fe
- Monte Carlo: EPOS-LHC hadronic model

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

Composition in TALE FD monocular data 2014-2022

Latest results from the Telescope Array

Tareq AbuZayyad @ ICRC2023

TALE FD hybrid data (Nov.2017 - Mar.2023)

Keitaro Fujita @ ICRC2023

ふてん 画 《画》《画》《目》 《日》

TA updated photon limits

- Neural network is trained on simulated data to distinguish between the proton and photon showers.
- Both reconstructed composition-sensitive parameters and raw signals registered by the SD are used as input

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook

ANISOTROPY

・ロト・団ト・団ト・ヨー うくの

TA hot spot: update 2023

Summary & Outlook

- 216 events (15 yrs of SD data)
- ▷ global significance $2.7 \times 10^{-3} = 2.8\sigma$

- ロト 《 昂 ト 《 臣 ト 《 臣) のへの

PPSC excess: update 2023

Summary & Outlook

- 1125 events (15 yrs of SD data)
- ► max local significance 4.0σ at $l = 17.9^{\circ}$, $b = 35.2^{\circ}$
- > probability to find such an excess on top of PPSC is $\sim 10^{-3} = 3.3\sigma$

Anisotropy WG update 2023

- stars, thin lines Auger only
- dots, thick lines Auger + TA (full sky)

コト 4 母 ト 4 画 ト 4 画 ト 4 日 ろへで

Full sky UHECR flux map

Composition from (an)isotropy?

- assume sources follow LSS
- measure typical UHECR deflection θ
- θ is mostly sensitive to composition ⇒ info on composition from deflections

SUMMARY & OUTLOOK

- Consistent measurement of spectrum over 5 decades
- Composition measurement by TALE SD and TALE Hybrid at low energies
- More data is needed at high energies
- TAx4 is up and taking data, but only half of it is completed are need to construct another half a.s.a.p.!

Latest results from the Telescope Array

P. Tinyakov for the Telescope Array Collaboration

Telescope Array experiment

Spectrum

Composition

Anisotropy

Summary & Outlook