Development of a new MV ana 000000000 Thase II results CNO ν in Borexir

Towards a ²¹⁰Bi measurement Backup

First Simultaneous Measurement of low-energy pp-chain solar neutrinos and prospects for CNO neutrino detection with Borexino

PhD Thesis defence

Daniele Guffanti

Gran Sasso Science Institute & INFN LNGS

Advisors

Dr. Nicola Rossi INFN Gran Sasso National Laboratories Dr. Matteo Agostini Technische Universität München

L'Aquila, July 26th 2019

Outline

Part I Solar Neutrinos & the role of Borexino

- Neutrino physics
- ▶ The Standard Solar Model
- ► A brief history of Solar Neutrino experiments
- The Borexino Experiment

Part II

Borexino Phase II: Analysis methods, Results and Impact

Part III The Search for CNO neutrinos in Borexino

Solar Neutrinos				
00000000				
Neutrino Physics	(in a nutshell)			

A sketch of neutrinos

- Hypothesized in 1930 (Pauli)
 Discovered in 1954 (Cowan & Reines)
- Still a lot of unknowns

Neutrino sources

t Development of a new MV analys 000000000 Phase II results CNO ν in B 0000000 000000 Towards a ²¹⁰Bi measurement Backup

The Sun as we know it

- \blacktriangleright $\tau_{\odot} = 4.6 \times 10^9$ years
- ▶ $M_{\odot} = 1.9885 \times 10^{30} \text{ kg}$
- ▶ $R_{\odot} = 696\,342\,\mathrm{km}$
- Conductive/Convective transition at ≈ 0.71R_☉

$$T^{surf}_{\odot} = 5778 \text{ K} T^{core}_{\odot} = 1.57 \times 10^7 \text{ K}$$

The Sun is a **benchmark** for **all** Stellar Evolution Models

Solar Neutrinos 0000000 The Standard Solar Model

Energy production in the Sun

The CNO cycle

t Development of a new MV anal 000000000 Phase II results CNO ν in 0000000 00000 Towards a ²¹⁰Bi measurement Backup
 OOOOOOOOOOOOOOO

5/48

Energy production in the Sun

The Standard Solar Model

The Standard Solar Model (SSM)

The Standard Solar Model (SSM)

t Development of a new MV ana 000000000 Phase II results CNO ν in Bor 0000000 0000000 o Towards a ²¹⁰Bi measurement Backu 00000000000

The Standard Solar Model

The Standard Solar Model (SSM)

t Development of a new MV ana 000000000 Phase II results CNO ν in Bo 0000000 000000 10 Towards a ²¹⁰Bi measurement Backu 00000000000

The Standard Solar Model

The Standard Solar Model (SSM)

Bahcall, Pinsonneault, Peña-Garay, Basu, Haxton, Serenelli, Vinyoles, ...

► Energy is transported via conduction up to r < 0.71R_☉, after that convection takes place

t Development of a new MV ana 000000000 Phase II results CNO ν in Bo OOOOOOO OOOOOO o Towards a ²¹⁰Bi measurement Backu 00000000000

The Standard Solar Model

The Standard Solar Model (SSM)

Solar Neutrinos			
00000000			
Solar neutrinos			

Neutrino oscillation

Neutrino produced in the Sun in pure electron flavour

Solar Neutrinos			
00000000			
Solar neutrinos			

Neutrino oscillation

Neutrino produced in the Sun in pure electron flavour

Neutrino oscillation

Impact of matter on neutrino oscillation

Solar Neutrinos OOOOOOOO Solar neutrinos

Presence of matter (electrons) = Interaction Potential

Affects differently ν_e (CC + NC interaction) and $\nu_{\mu,\tau}$ (NC only)

MSW effect

Measurements of Solar Neutrinos

Expectation from the SSM: $L(pp-chain) \simeq 99\% - L(CNO cycle) \simeq 1\%$

 Solar Neutrinos
 The Borexino Experiment
 Development of a new MV analysis
 Phase II results
 CNO ν in Borexino
 Towards a ²¹⁰Bit measurement
 Backup

 00000000
 00000000
 00000000
 000000000
 000000000

 00ar v history
 0000000
 00000000
 00000000

Measurements of Solar Neutrinos

Measurements of Solar Neutrinos

Expectation from the SSM: $L(pp-chain) \simeq 99\% - L(CNO cycle) \simeq 1\%$

Measurements of Solar Neutrinos

Expectation from the SSM: $L(pp-chain) \simeq 99\% - L(CNO cycle) \simeq 1\%$

10¹

Measurements of Solar Neutrinos

Expectation from the SSM: $L(pp-chain) \simeq 99\% - L(CNO cycle) \simeq 1\%$

Cherenkov

SNO ⁸R

hep

10¹

Measurements of Solar Neutrinos

Before Borexino

After Borexino

Gallium - Gallex/GNO

(1996-running)

Measurements of Solar Neutrinos

Before Borexino

After Borexino

Measurements of Solar Neutrinos

Before Borexino

After Borexino

 $\pm 6\%$

 $\pm 1\%$

Solar Neutrinos The Bo 000000Solar ν history

nt Development of a new MV anal 000000000

 \rightarrow

Phase II results CNO ν in B 0000000 00000 Towards a ²¹⁰Bi measurement Backuj 00000000000

 \rightarrow

The Solar Metallicity puzzle

Improved measurement of element abundances in the photosphere

Low-Metallicty Standard Solar Model (LZ SSM)

LZ SSM predictions does not match helioseismology data

Why?

- Wrong metallicity?
- Wrong opacity calculations?
- Approximations in the SSM?

Solar neutrino fluxes also depends on metallicity and can give hints on the actual Sun composition

Solar Neutrinos The Borexino Experiment Development of a new MV analysis

The Borexino Experiment

 $(\approx 10 \text{ cm resolution at 1 MeV})$

N_{v.e.}: Normalized number of photoelectrons

Expected signal (and background) in Borexino

Expected interaction rate in Borexino

from \approx 130 counts/day/100 t for $\nu(pp)$ to \approx 2.8 counts/day/100 t for $\nu(pep)$

 $\nu\text{-induced}$ electron recoil is **indistinguishable** from β and γ background

Extreme low background requirements

	Requirement	Result Phase-II
²³⁸ U ²³² Th ²¹⁰ Po ²¹⁰ Bi ¹⁴ C	$\begin{array}{l} 1 \times 10^{-16} g/g \\ 1 \times 10^{-16} g/g \\ < 100 cpd/100 ton \\ 1 \times 10^{-18} g/g \end{array}$	$ < 9.5 \times 10^{-20} \text{ g/g} \\ < 5.7 \times 10^{-19} \text{ g/g} \\ \sim 50 \text{ cpd/100ton} \\ \sim 20 \text{ cpd/100ton} \\ \sim 2 \times 10^{-18} \text{ g/g} $

Data selection

Full Spectrum

Solar Neutrinos The Borexino Experiment Development of a new MV analysis Phase II results CNO v in Borexino

Data selection

Solar Neutrinos The Borexino Experiment Development of a new MV analysis Phase II results CNO ν in Borexino

Data selection

Full Spectrum

Muon cut

pprox 4300 $\mu/{
m day}$ crossing ID Removes μ , μ -induced *n* and cosmogenics

Fiducial Volume cut

Reduction of external and surface background

t Development of a new MV ana 000000000 Phase II results CNO ν in Bo

Towards a ²¹⁰Bi measurement Backup

Data selection

Full Spectrum

Muon cut

 \approx 4300 μ /day crossing ID Removes μ , μ -induced *n* and cosmogenics

Fiducial Volume cut

Reduction of external and surface background

¹¹C suppression (TFC cut)

 μ -*n* pairs coincidences + space-time correlation with β -like ev. > ¹¹C tagging efficiency 92 ± 4% > Residual livetime 64.3%

		Development of a new MV analysis		
		• 0000 0000		
The Borexino data	a analysis			

Part II

Borexino Phase II Analysis Methods, Results and Implications

Analysis Method

- Development of a new multivariate analysis
- Statistical sensitivity and model systematic uncertainties

Borexino Phase II Results

• Determination of low-energy solar ν interaction rate

Interpretation of the results

- Study of ν_e survival probability
- Impact on the Solar Metallicty Puzzle

00000000

Development of a new MV analysis Phase II results CNO ν in Borexino

The Borexino data analysis

Data analysis concepts

Energy spectrum Simultaneous fit of the ¹¹C-sub./tag. datasets

Energy response function:

- **Analytical** description giving mean and variance of the energy estimator as a faction of the deposited energy
- Monte Carlo simulation of signal and background compo-nents

Development of a new MV analysis

Phase II results CNO ν in Be 0000000 000000 Towards a ²¹⁰Bi measurement Backup 00000000000

The Borexino data analysis

Data analysis concepts

Energy spectrum Simultaneous fit of the ¹¹C-sub./tag. datasets

Energy response function:

- Analytical description giving mean and variance of the energy estimator as a faction of the deposited energy
- Monte Carlo simulation of signal and background components

		Development of a new MV analysis		
		0000000		
The Borevino dat	a analysis			

Previous analysis Likelihood function

$$\mathcal{L}(oldsymbol{ heta}) = \mathcal{L}_{ ext{sub}}^{ ext{TFC}}(oldsymbol{ heta}) imes \mathcal{L}_{ ext{cmp}}^{ ext{TFC}}(oldsymbol{ heta}) imes \mathcal{L}_{ ext{PS}}(oldsymbol{ heta})$$

Product of Poisson Likelihood of 1D histograms (approximate construction)

Known limitations

Ignores correlation between variables

Hard-coded rigid structure

The Borexino data analysis

Validation, Benchmarking and Performance

00000000

Validation

Performed on an ensemble of pseudo-datasets. No bias found in the best fit estimate distributions

Benchmarking against the previous MC fit tool The same ensemble of pseudo-datasets analysed using bx-stats and the previous MC fit with the same settings of the minimizer and same PDFs

Performance

- Increased flexibility Easier to include additional variables and datasets
- Improved stability ► fit results are more stable for components with low sensitivity
- Better computational performance More efficient design led to $50 \times$ improvement in time per minimizer call

		Development of a new MV analysis		
		00000000		
The Borexino dat	a analvsis			

PDF creation

Neutrino and background events generated

 $\hookrightarrow | \mathsf{Full}\,\mathsf{MC}\,\mathsf{simulation}$

+ electronic chain

+ data reconstruction

 \hookrightarrow Build a 3D histogram

		Development of a new MV analysis		
		00000000		
The Borexino data	ı analysis			

PDF creation

Variable correlation

Multidimensional PDFs take into account second order effects like the **spatial dependence** of the **energy response**

		Development of a new MV analysis					
		00000000					
The Borexino data analysis							

PDF creation

Binning Optimization

Reduce the impact of statistical fluctuations preserving physical information

- Radius: $r \rightarrow r^3$ (5 bins only)

Development of a new MV analysis Phase II results CNO ν in Borexino 000000000

Borexino sensitivity and fit model systematics

Signatures of solar neutrinos in Borexino data

Analysis looses sensitivity when two or more components have similar shape

Example: The ²¹⁰Bi-CNO-pep triplet CNO signal can be mimicked by the interplay of ²¹⁰Bi and *pep* events. \hookrightarrow Strong correlation of the reconstructed parameters

Correlation studies

Correlation studies

	Development of a new MV analysis		
	000000000		

Borexino sensitivity and fit model systematics

Statistical Sensitivity

Borexino sensitivity and fit model systematics

Systematic uncertainties

Borevino Phase II	reculte					
00000000		00000000	000000	00000000	0000000000	
Solar Neutrinos	The Borexino Experiment	Development of a new MV analysis	Phase II results	CNO ν in Borexino		

Borexino Phase II Dataset and fit configuration

Dataset

Exposure: 905 days × 100tons (1291.51 days from Dec. 2011 to May 2016) Fit range: 0.19–2.93 MeV

Fit baseline configuration

Free parameter	Constrained parameter
Parameter	Parameter
$\nu(pp)$ rate $\nu(pp)$ rate	ν (CNO) rate based on HZ and LZ SSM
ν (⁷ Be) rate Background components	¹⁴ C and ¹⁴ C— ¹⁴ C co- based on "second incidences dataset

Development of a new MV analysi 000000000
 Phase II results
 CNO ν in B

 OOOOOO
 OOOOOO

Towards a ²¹⁰Bi measurement Backup 00000000000

Borexino Phase II results

Fit *p*-value = 0.5

Analysis independently crosschecked with analytical and MC previous fit methods \hookrightarrow Consistent results \checkmark

Borexino Phase II results N, 300 400 500 600 700 800 0.16 Inner region of FV (R < 2.4 m) Events / (day \times 100 T \times 10 N_h) Reduced ¹¹C (PS-L_{DD} < 4.8) 0.14 ²¹⁰Bi 0.12 —¹¹C (sub) v(pep) 0.1 ---- Ext. 40K 0.08 v(CNO) 0.06 0.04 0.02

750 1000 1250 1500 1750 2000 2250 Energy (keV) CNO and ²¹⁰Bi have a very similar spectral shape \hookrightarrow Correlation between ν (CNO), ν (*pep*) and ²¹⁰Bi signal

$\nu(pep)$

CNO constrained according to SSMs (HZ & LZ)

Borexino (HZ CNO): Borexino (LZ CNO):	$2.43\pm0.36(stat)^{+0.15}_{-0.22}(sys)$ cpd/100 ton 2.65 \pm 0.36(stat)^{+0.15}_{-0.24}(sys) cpd/100 ton
HZ Model:	2.74 \pm 0.05 cpd/100 ton
LZ Model:	2.78 \pm 0.05 cpd/100 ton

No- $\nu(pep)$ hypothesis rejected $> 5\sigma$ C.L.

CNO and ²¹⁰Bi have a very similar spectral shape \hookrightarrow Correlation between ν (CNO), ν (*pep*) and ²¹⁰Bi signal

$\nu(pep)$

CNO constrained according to SSMs (HZ & LZ)

Borexino (HZ CNO): Borexino (LZ CNO):	$2.43\pm0.36(\text{stat})^{+0.15}_{-0.22}(\text{sys})$ cpd/100 ton $2.65\pm0.36(\text{stat})^{+0.15}_{-0.24}(\text{sys})$ cpd/100 ton
HZ Model:	2.74 \pm 0.05 cpd/100 ton
LZ Model:	2.78 \pm 0.05 cpd/100 ton

No- $\nu(pep)$ hypothesis rejected $> 5\sigma$ C.L.

		Phase II results		
		0000000		
Impact for Solar a	nd $ u$ physics			

Borexino Phase II

Most accurate determination of low-energy solar neutrino to date

pp neutrinos: improved accuracy respect to previous Borexino results ⁷Be neutrinos: 2.7% precision, twice more accurate than SSM predictions *pep* neutrinos: significance > 5σ for the first time (constraining CNO rate) CNO neutrinos: confirmed previous Borexino result, best upper limit available

	Phase II results		
	0000000		
Impact for Solar and $ u$ physics			

Borexino Phase II

Most accurate determination of low-energy solar neutrino to date

pp neutrinos: improved accuracy respect to previous Borexino results ⁷Be neutrinos: 2.7% precision, twice more accurate than SSM predictions *pep* neutrinos: significance > 5σ for the first time (constraining CNO rate) CNO neutrinos: confirmed previous Borexino result, best upper limit available

			Phase II results						
			00000000						
Impact for Solar and 12 physics									

u_e survival probability

Survival probability throughout the solar ν spectrum studied **by a single experiment**

Assuming HZ SSM fluxes (favoured by helioseismology): Absence of matter effect rejected at 98.2% C.L. (2.1σ)

Solar Neutrinos The Borexino Experiment 00000000 Impact for Solar and $ u$ physics		ew MV analysis Phase II resu 000000	ts CNO <i>ν</i> in Borexino ● 00000000			
		Solar physi	cs			
	_			HZ SSM	LZ SSM	Δ (%)
$T_{\odot}(HZ) - T_{\odot}(LZ) \approx 1\%$ \hookrightarrow Different neutring	- o fluxes	$\Phi(^{7}Be) (\times 10^{9} \text{ cm}) \Phi(^{8}B) (\times 10^{6} \text{ cm})$	$(-2s^{-1})$ 4. $(-2s^{-1})$ 5.4	93 ± 0.30 46 ±0.66	$\begin{array}{c} 4.50 \pm 0.27 \\ 4.50 \pm 0.54 \end{array}$	-8.7 -17.6
		6.0 SSM: 5.5 ₩Z (68. 5.5 € LZ (68. 5.5 € 4.5 4.0 3.5 5.5 8 4.0 5.5 8 8 4.5 5.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	27% C.I.) 27% C.I.)			

Φ_{8B} (×10⁶ cm⁻² s⁻¹)

	Phase II results ○○○○○○●		
Impact for Solar and $ u$ physics			

	Solar physics		
		HZ SSM	LZ SSM
$T_{\odot}(HZ) - T_{\odot}(LZ) \approx 1\%$ \hookrightarrow Different neutrino fluxes		$\begin{array}{c} 4.93 \pm 0.30 \\ 5.46 \pm 0.66 \end{array}$	4.50 ± 0.2 4.50 ± 0.9
Borexino shows a weak preference for the HZ SSM	6.0 SSM: HZ (68.27% C.I.) 5.5	ntries (a.u.)	str

Frequentist hypothesis test LZ rejected at 96.6% C.L.

Δ (%) -8.7

-17.6

0.27

0.54

		Phase II results			
0000000 Impact for Solar and $ u$ physics	00000000	0000000	00000000	00000000000	

Solar physics

$T_{\odot}(HZ) - T_{\odot}(LZ) \approx 1\%$ \hookrightarrow Different neutrino fluxes

Borexino shows a weak preference for the HZ SSM

Frequentist hypothesis test

LZ rejected at 96.6% C.L.

Bayesian hypothesis test

HZ favoured with Bayes factor K = 4.9

Solar Neutrinos The Borexino Experiment ΟΟΟΟΟΟΟΟ Impact for Solar and ν physics		Phase II results CNO <i>ν</i> in Bo	
	So	lar physics	

		HZ SSM	LZ SSM	Δ (%)
$_{\odot}(HZ) - T_{\odot}(LZ) \approx 1\%$	$\Phi(^{7}\text{Be}) (\times 10^{9} \text{ cm}^{-2} \text{s}^{-1}) \\ \Phi(^{8}\text{B}) (\times 10^{6} \text{ cm}^{-2} \text{s}^{-1})$	$\begin{array}{c} 4.93 \pm 0.30 \\ 5.46 \pm 0.66 \end{array}$	$\begin{array}{c} 4.50 \pm 0.27 \\ 4.50 \pm 0.54 \end{array}$	-8.7 -17.6

Borexino shows a weak preference for the HZ SSM

Frequentist hypothesis test LZ rejected at 96.6% C.L.

Bayesian hypothesis test

HZ favoured with Bayes factor K = 4.9

Global Analysis:

Including all solar data + KamLAND reactor data Significance is reduced

	Phase II results ○○○○○○●		
Impact for Solar and $ u$ physics			i

Solar physics			
	HZ SSM	LZ SSM	Δ (%)
$\Phi(^{7}\text{Be}) (\times 10^{9} \text{ cm}^{-2} \text{s}^{-1})$ $\Phi(^{8}\text{B}) (\times 10^{6} \text{ cm}^{-2} \text{s}^{-1})$	4.93 ± 0.30	4.50 ± 0.27	-8.7
$\Phi(CNO) (\times 10^8 \text{ cm}^{-2} \text{s}^{-1})$	4.88 ± 0.53	4.30 ± 0.34 3.51 ± 0.35	-17.0 -28.1
	$\begin{array}{c} & \Phi(^{7}\text{Be})(\times10^9\text{cm}^{-2}\text{s}^{-1}) \\ \Phi(^{8}\text{B})(\times10^6\text{cm}^{-2}\text{s}^{-1}) \\ \Phi(\text{CNO})(\times10^8\text{cm}^{-2}\text{s}^{-1}) \end{array}$	$\begin{tabular}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $

$T_{\odot}(HZ) - T_{\odot}(LZ) \approx 1\%$ \hookrightarrow Different neutrino fluxe

Borexino shows a weak preference for the HZ SSM

Frequentist hypothesis test

LZ rejected at 96.6% C.L.

Bayesian hypothesis test

HZ favoured with Bayes factor K = 4.9

Global Analysis:

Including all solar data + KamLAND reactor data Significance is reduced

CNO neutrinos

can help solving the puzzle

Solar Neutrinos The Borexino Experimen

 Development of a new MV ana 000000000
 Phase II results
 CNO ν in Borexino

 0000000
 0000000

Towards a ²¹⁰Bi measurement Backup

The importance of CNO neutrinos

The Importance of CNO neutrinos

Astrophysics

Contribution to the total solar power $\approx 1\%$ BUT dominant energy production mechanism for heavier stars

Solar Neutrinos The Borexino Experimen

Development of a new MV ana 000000000 Phase II results CNO *ν* in Borexino

Towards a ²¹⁰Bi measurement Backup
 000000000000

The importance of CNO neutrinos

The Importance of CNO neutrinos

Astrophysics

Contribution to the total solar power $\approx 1\%$ BUT dominant energy production mechanism for heavier stars

The Solar Metallicity Problem

$$\Delta\Phi_{CNO}(HZ-LZ)\approx 30\%$$

 $\begin{array}{ll} \mbox{\it pp-chain} & \mbox{CNO cycle} \\ \Phi_{\mbox{\it pp}}(T_{\odot}(Z)) & \Phi_{\mbox{\footnotesize CNO}}(T_{\odot}(Z), (n_{\mbox{\it N}}, n_{\mbox{\footnotesize CNO}})) \end{array}$

Indirect Z dependency

+ Direct Z dependency

Solar Neutrinos The Borexino Experimer

t Development of a new MV ana 000000000 Phase II results CNO ν in Borexino

Towards a ²¹⁰Bi measurement Backup 00000000000

The importance of CNO neutrinos

The Importance of CNO neutrinos

Astrophysics

Contribution to the total solar power $\approx 1\%$ BUT dominant energy production mechanism for heavier stars

The Solar Metallicity Problem

$$\Delta \Phi_{CNO}(HZ - LZ) \approx 30\%$$

pp-chain $\Phi_{pp}(T_{\odot}(Z))$

 $\frac{\text{CNO cycle}}{\Phi_{\text{CNO}}(T_{\odot}(Z), (n_{\text{N}}, n_{\text{C}}))}$

Direct measurement of C and N abundance in the Sun

Indirect Z dependency

+ Direct Z dependency

		00000000	000000000000000000000000000000000000000
		CNO ν in Borexino	

Part III

Borexino is the only running experiment with the **potential** to achieve a **first measurement of CNO neutrinos**

Borexino sensitivity

- Impact of background
- Detailed studied on the sensitivity of Borexino under different scenarios

Background assessment strategy

- ▶ Indirect measurement of ²¹⁰Bi rate thanks to ²¹⁰Po daughter
- ▶ Sources of unsupported ²¹⁰Po
- ▶ Development of model independent method for *supported* ²¹⁰Po measurement

		CNO $ u$ in Bo
		000000

Towards a ²¹⁰Bi measurement Backup

Borexino sensitivity to CNO neutrinos

Fit sensitivity limited by 210 Bi and u(pep) background

Solar Neutrinos The Borexino Experimer

Development of a new MV analy
 OOOOOOOOO

Phase II results CNO ν in Borexino

Towards a ²¹⁰Bi measurement Backup

Borexino sensitivity to CNO neutrinos

Expected sensitivity to CNO neutrino measurement

CNO uncertainty evaluated with simulated experiments

Full multivariate analysis (energy + radial distribution) Simultaneous fit of the TFC-sub./tagged datasets

Exposure: Variables:	Jul 2013 - May 2016 N _h , r ³
	Inj. Rate
CNO	4.9 cpd/100t
²¹⁰ Bi	17.5 cpd/100t
Remainder	Borexino Ph. II

pep and ²¹⁰Bi constraints folded in the analysis by adding to the likelihood two independent multiplicative Gaussian penalty terms on the ²¹⁰Bi and the ν (pep) rate.

Shape information helps the CNO sensitivity if the ²¹⁰Bi constraint is weaker than 2.5 cpd/100t (Systematic uncertainties not included)

Towards a ²¹⁰Bi measurement Backup
 00000000000

Borexino sensitivity to CNO neutrinos

Borexino discovery power

Injected background rate $R_{\rm Bi} = 17.5 \text{ cpd}/100 \text{ t}$

 $R_{pep} = 2.8 \text{ cpd}/100 \text{ t}$

- LZ SSM bx-stats analysis
- HZ SSM bx-stas analysis

Discovery power evaluated performing an hypothesis test based on a profile likelihood test statistics

Stronger constraints

 \hookrightarrow higher sensitivity to CNO signal

- $\blacktriangleright~2{-}3\sigma$ evidence achievable if ^{210}Bi is measured with $\tilde{\sigma}_{Bi}$ ≤ 2.5 cpd/100 t
- The discovery power is the same even if only an upper limit for ²¹⁰Bi is provided

Solar Neutrinos The Borexino Experiment Development of a new MV analysis Phase II results CNO v in Borexino

00000000

Borexino sensitivity to CNO neutrinos

CNO sensitivity summary

The **bulk** of the **sensitivity** to **CNO** ν comes from a simple **counting analysis**

- CNO value and uncertainty **determined** by the background rate assessment. A bias on the background rate is linearly transferred to the CNO rate
- Systematic uncertainties of the fit model are subdominant compared to the impact of the background rate precision

Solar Neutrinos The Borexino Experiment Dev

Development of a new MV analy 000000000
 Phase II results
 CNO ν in Borexino

 0000000
 00000000

 Towards a ²¹⁰Bi measurement Backup 00000000000

Borexino sensitivity to CNO neutrinos

CNO sensitivity summary

The **bulk** of the **sensitivity** to **CNO** ν comes from a simple **counting analysis**

- CNO value and uncertainty determined by the background rate assessment.
 A bias on the background rate is linearly transferred to the CNO rate
- Systematic uncertainties of the fit model are subdominant compared to the impact of the background rate precision

Background assessment strategy

pep neutrinosLink with $\Phi(pp)$ +Luminosity constraint $\hookrightarrow \tilde{\sigma}_{pep} \simeq 1\%$

²¹⁰Bi background

Not that easy...

Solar Neutrinos The Borexino Experiment Development of a new MV analysis Phase II results CNO ν in Borexino

00000000

Background assessment strategy

²¹⁰Bi background rate measurement

F. Villante, A. Ianni, F. Lombardi, G. Pagliaroli, F. Vissani DOI:10.1016/j.physletb.2011.05.068

²¹⁰Pb dissolved in the scintillator

Assuming no source of 210 Pb $\rightarrow ^{210}$ Bi in equilibrium

Solar Neutrinos The Borexino Experiment Development of a new MV analysis Phase II results CNO ν in Borexino

00000000

Background assessment strategy

²¹⁰Bi background rate measurement

F. Villante, A. Janni, F. Lombardi, G. Pagliaroli, F. Vissani DOI:10.1016/j.physletb.2011.05.068

Background assessment strategy

²¹⁰Bi background rate measurement

F. Villante, A. Ianni, F. Lombardi, G. Pagliaroli, F. Vissani DOI: 10.1016/j.physletb.2011.05.068

²¹⁰Pb
$$\xrightarrow{t_{1/2}}_{22.2 y}$$
 ²¹⁰Bi $\xrightarrow{t_{1/2}}_{5.0 d}$ ²¹⁰Po $\xrightarrow{t_{1/2}}_{138.4 d}$ ²⁰⁶Pb (stable)
²¹⁰Pb dissolved in the scintillator

Assuming no source of $^{210}\text{Pb} \rightarrow ^{210}\text{Bi}$ in equilibrium $\hookrightarrow ^{210}\text{Po}$ in equilibrium too

²¹⁰Po out of equilibrium

The method works also in presence of out–of–equilibrium ²¹⁰Po contamination

$$R_{\rm Po}(t) = (A - B)e^{t/\tau_{\rm Po}} + B$$

A = **unsupported** term, B = **supported** term ($R_{Po} \approx 1400 \text{ cpd}/100 \text{ t}$ at beginning Phase II)

²¹⁰Po spatial evolution

²¹⁰Po detached from the vessel and transported by **fluid motions** induced by **temperature variations**

iso-volumetric layer of a 2.75 m sphere

Solar Neutrinos The Borexino Expe

it Development of a new MV anal 000000000 Phase II results CNO ν in Be 0000000 000000 Towards a ²¹⁰Bi measurement Backup

Measurement concepts

From ²¹⁰Po to the ²¹⁰Bi rate

²¹⁰Po spatial distribution model unkown

Preliminary results from computational fluid dynamic shows a qualitative agreement with data

t Development of a new MV analys 000000000 Phase II results CNO ν in Bo

Towards a ²¹⁰Bi measurement Backup

Measurement concepts

From ²¹⁰Po to the ²¹⁰Bi rate

²¹⁰Po spatial distribution model unkown

Preliminary results from computational fluid dynamic shows a qualitative agreement with data

 \rightarrow

 \rightarrow

²¹⁰Po density continuity equation

(Ding XF., F. Villante, N. Rossi)

For each *t*, in \mathbf{x}_0 where n_{Po} is **minimum** \rightarrow Convection term = 0

 \hookrightarrow in \mathbf{x}_0 where n_{P_0} is **minimum** \to **Convection term** = 0 **and is a Plateau** ($\nabla^2 n_{P_0} = 0$) \to Diffusion term = 0 Upper Limit on ²¹⁰Bi positive contr. from diff.

Solar Neutrinos The Borexino Experiment

Development of a new MV anal 000000000 Phase II results CNO ν in Bore: 0000000 0000000 Towards a ²¹⁰Bi measurement Backup

The Polonium Plateau Finder

A model independent Plateau Finder

How to determine the (flat) minimum distribution when no model is given?

Solar Neutrinos The Borexino Experime

nt Development of a new MV anal 000000000

Phase II results CNO ν in Borexi

Towards a ²¹⁰Bi measurement Backup

A model independent Plateau Finder

How to determine the (flat) minimum distribution when no model is given?

Adaptive Kernel Density Estimator (KDE)

Associate to each datum x_n a **kernel** K (Gaussian) with **bandwidth** w_n dependent on the local density

$$\hat{f}(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{w_n} K\left(\frac{x - x_n}{w_n}\right)$$

Advantages respect to "binned" density estimators (histograms)

- Smooth
- Does not depend on binning
- Preserve information loss (position inside the bin)

Solar Neutrinos The Borexino Experime

t Development of a new MV anal 000000000 Phase II results CNO ν in B 0000000 000000 Towards a ²¹⁰Bi measurement Backup

The Polonium Plateau Finder

Plateau definition criterion

Solar Neutrinos The Borexino Experim

 Development of a new MV anal 000000000 Phase II results CNO ν in B 0000000 000000 Towards a ²¹⁰Bi measurement Backup

The Polonium Plateau Finder

Plateau definition criterion

Find the position of the Density Estimator minimum Solar Neutrinos The Borexino Experime

t Development of a new MV anal 00000000 Phase II results CNO ν in Be 0000000 000000 Towards a ²¹⁰Bi measurement Backup

The Polonium Plateau Finder

Plateau definition criterion

- Find the position of the Density Estimator minimum
- 2 Expand left and right until the absolute value of the DE derivative exceed the threshold

Solar Neutrinos The Borexino Experime

t Development of a new MV ana 000000000 Phase II results CNO ν in Bol OOOOOOO OOOOOO Towards a ²¹⁰Bi measurement Backup

The Polonium Plateau Finder

Plateau definition criterion

- Find the position of the Density Estimator minimum
- Expand left and right until the absolute value of the DE derivative exceed the threshold
- 3 Integrate the DE and compute the rate

			Towards a ²¹⁰ Bi measurement	
			000000000	
The Polonium Pla	teau Finder			

Test configuration

Livetime: 25 days Injected Plateau Rate: 17.5 cpd/100 t Spherical FV: r < 2 m Events distribution along z \hookrightarrow transformed coordinate

$$z \to \zeta = \left(R^2 z - \frac{1}{3} z^3\right) \cdot \frac{3}{R^3}$$

Test results

SSI & INFN-LNGS) Measurement of pp-chain solar ν and prospects for CNO ν detection in Borex

			Towards a ²¹⁰ Bi measurement	
			00000 00 0000	
Polonium Plateau	1 Preliminary Results			

A first look on data

Solar Neutrinos The Borexino Experiment

 Development of a new MV ana 000000000 hase II results CNO u in Bo 0000000 000000 Towards a ²¹⁰Bi measurement Backup

Polonium Plateau Preliminary Results

Preliminary results

Solar Neutrinos The Borexino Experimen

t Development of a new MV an 000000000 ase II results CNO ν in Bor 000000 0000000 Towards a ²¹⁰Bi measurement Backup

Polonium Plateau Preliminary Results

Preliminary results

Recent studies shows that a stable "clean region" is smaller than the selected FV

Towards a ²¹⁰Bi measurement Backup

Future developments

(Very) Recent and future developments

Solar Neutrinos The Borexino Experiment Deve 00000000 00 Future developments

Development of a new MV analy 000000000 Phase II results CNO u in Borex

Towards a ²¹⁰Bi measurement Backup

Prospects for CNO neutrino detection

- ► The sensitivity study shows that a measurement of the ²¹⁰Bi background is **crucial** to achieve a first detection of CNO neutrinos
- > After the thermal stabilization the detector entered a new phase
- Radiopurity and stability conditions are promising
- ▶ The KDE method can be extended to include more dimension:
 - ▶ Monitoring of ²¹⁰Po behaviour
 - Cross-check other independent analyses

			Towards a ²¹⁰ Bi measurement	
			000000000000	
Future developm	ents			

Conclusions

Borexino Phase II Results

- Development of a new MV Analysis
- Sensitivity and Systematics Studies
- Fit on data
- Test of oscillation model and SSM predictions

Search for CNO neutrinos with Borexino

- Detailed sensitivity study
- Background assessment strategy
- Development of a model independent method for the determination of ²¹⁰Bi background

Future developme	ents	

Thank you for your attention

Towards a ²¹⁰Bi measurement Backup

			Backup

Backup material

Solar physics

Relative intensity of pp-chain terminations

$$p + p \rightarrow {}^{2}H + e^{+} + \underbrace{\nu_{e}} \qquad \nu(pep)$$

$$2H + p \rightarrow {}^{3}He + \gamma \checkmark$$

$$3He + {}^{3}He \rightarrow {}^{4}He + 2p$$

$$3He + {}^{4}He \rightarrow {}^{7}Be + \gamma$$

$$7Be + e^{-} \rightarrow {}^{7}Li + \underbrace{\nu_{e}} \qquad \nu({}^{8}B)$$

$$({}^{3}He + {}^{4}He) \qquad 2\Phi({}^{7}Be)$$

$$R_{I/II} := \frac{\langle {}^{3}\text{He} + {}^{4}\text{He} \rangle}{\langle {}^{3}\text{He} + {}^{3}\text{He} \rangle} = \frac{2\Phi({}^{\prime}\text{Be})}{\Phi(pp) - \Phi({}^{7}\text{Be})}$$

$$\begin{split} R^{(BX)}_{I/II} &= 0.178^{+0.027}_{-0.023} \\ R^{(LZ)}_{I/II} &= 0.180 \pm 0.011 \\ R^{(LZ)}_{I/II} &= 0.161 \pm 0.010 \end{split}$$

Evaluation of the discovery power

CNO uncertainty gives indication about the CNO signal strength, but does not take into account the probability that fluctuation of the background can mimic the signal.

Discovery power from hypothesis test on profile likelihood test-statistic

 q_0 says how well a model with **no CNO** describes the data

 Phase II results
 CNO ν in Borexi

 0000000
 00000000

Towards a ²¹⁰Bi measurement Backup
 00000000000

Impact of an additional purification campaign

An additional purification will not necessarily improve the sensitivity

Even with lower ²¹⁰Bi background, CNO and ²¹⁰Bi energy spectra **remain degenerate**

 $\stackrel{\hookrightarrow}{\to} \text{possible improvement in} \\ \text{the CNO upper limit}$

Interesting to possibly exclude HZ CNO, but current limit already quite stringent

Backup

Impact of Additional Exposure

Additional Exposure plays a secondary role

pep neutrino background assessment

Impose
$$L_{\odot}^{(\text{photon})} = L_{\odot}^{(\text{photon})}$$

= $4\pi (1 \text{ a.u.})^2 \sum_{i=pp, ^7\text{Be}, \dots} \alpha_i \Phi_i$

$$C_{\odot}^{(\mathrm{photon})}$$
 known with 0.4%, α_i uncertainty $pprox$ 10⁻⁴

$$\hookrightarrow \Phi_{\it pp} \ \text{uncertainty} < 1\%$$

Assumptions

- ▷ The Sun is powered *only* by the processes of the *pp* chain and of the CNO cycle
- $\triangleright~$ The Sun is in equilibrium (L_{\odot} is constant over a $\sim~10^5$ yr time scale)
- ▷ ²H and ³He are in local kinetic equilibrium (creation rate = destruction rate) Reasonable since lifetime 2 H $\approx 10^{-8}$ yr and 3 He $\approx 10^{5}$ yr (proton lifetime $\approx 10^{10}$ yr)

