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Quantum bits (qubits) are the quantum counterpart of the classical bit.


Many proposed technologies for their implementation

An ideal qubit must be:


1. Coupled to other qubits [entanglement]


n classical bits = string with n [0,1] 


n entangled qbits = 2n -1 complex nums 


2. Decoupled from the world [quantum 
coherence]



The Role of Particle Physics

Currently, superconducting qubits look a lot like particle 
detectors


But if we use similar devices to detect particle … how can we 
state that qubits are isolated from the external world?


Cosmic rays, particles, … can interact with it!



Where are we now (1)
The rate of errors in a qubit is compatible with the rate of radioactive interactions


The effect of radioactivity will be long (millisecond scale)  
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https://www.nature.com/articles/s41586-021-03557-5


Where are we now (2)
Diminishing the radioactivity improves the frequency stability of a qubit


Understanding the different sources of radioactivity is crucial to suppress them
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Figure 3. Fluxon dynamics measured deep-underground in LNGS. The LNGS cryostat is located under a 1.4 km granite
overburden (3.6 km water equivalent) and is additionally protected from ionizing radiation with lead shields located both inside
and outside the refrigerator. We measured a chip with three gradiometric devices (labeled A, B and C) to check correlations
between flux tunneling events. Top panels: the left-hand panels in (a) and (b) show the field dependence of device A in
two separate cooldowns demonstrating odd and even state initialization, respectively. The right-hand panels show time traces
measured at B⊥ = 0. Notice the stability of the trapped flux on timescales of days, before exposing the cryostat to a ThO2

radioactive source (red vertical line), which activates fluxon dynamics. The blue vertical line indicates source removal. The
bottom panels show measured switching dynamics between odd and even states for all devices during ThO2 exposure.

below the critical temperature Tc,grAl ≈ 2K of the grAl
film. However, the enclosed flux is now trapped in the
gradiometric loop. In case of perfectly symmetric inner
loops and zero field gradient the phase difference across
the JJ equals π, pinning the atom at the half-flux bias.
Fig. 2 (b) shows the gradiometric fluxonium after initial-
ization at the effective half-flux bias (left panel). Wide
range flux sweeps of the gradiometric device are shown
in S5. The difference in field range covered in Fig. 2 (a)
and Fig. 2 (b) illustrates the suppression of global mag-
netic field sensitivity by roughly a factor of 120 for the
gradiometric fluxonium. According to our effective cir-
cuit model, the remaining field sensitivity could be either
caused by an asymmetry of the outer loop inductances,
or by a small field gradient.

Figure 2 (c) depicts time-domain characterization of
the coherence properties of the gradiometric atom. For
the gradiometric fluxonium initialized at the effective
half-flux bias we find a Ramsey coherence time of T !

2 =
0.59±0.02 µs, which is not limited by the energy relax-
ation time T1 = 10.0±0.3 µs. We measured T1 fluctu-
ations of 10% on a timescale of two hours. Notably,
the non-gradiometric fluxonium located on the same chip
exhibits similar coherence times T1 = 2.5±0.3 µs and
T !
2 = 0.76±0.04 µs, which excludes the gradiometric ge-

ometry as the cause of the much smaller coherence com-
pared to previous fluxonium implementations based on
similar grAl superinductors [24]. Moreover, in both de-
vices we do not observe an improvement in coherence
around the half-flux sweet spot (see S4). While the sen-

sitivity to homogeneous fields is decreased for the gra-
diometric device, this is not the case for local flux noise,
which might even increase due to larger length of the
shunting inductance [40]. A single spin echo pulse im-
proves the coherence by almost an order of magnitude
for the gradiometric fluxonium, up to T2 = 5.3±0.3 µs,
and by factor of 3.5 for the non-gradiometric fluxonium,
up to T2 = 2.6±0.4 µs. Therefore, we conclude that Ram-
sey coherence of all devices on this chip is limited by local
and low-frequency noise of unknown origin.

The time stability of the half-flux initialization is de-
termined by fluxon escape rate, which becomes apparent
by an abrupt change of persistent current under constant
or zero magnetic field bias. To suppress fluxon dynamics
the outer loop of gradiometric devices needs to be im-
plemented using a superconducting wire with low phase
slip rate. The expected phase slip rate in our grAl su-
perinductance can be found by modeling the material as
an effective array of JJs [41]. The calculated phase-slip
rate is ∼ 10−20 Hz (see S5). In strong contrast, in all
four cooldowns in the cryostat located in Karlsruhe (not
shielded from ionizing radiation) we observe an escape
of the trapped flux once in a few hours, similar to the
phase slip rate found in conventional JJ array superin-
ductors [19]. The time evolution of the readout mode in
Fig. 2 (b) shows a detected flux escape event, manifest-
ing as a frequency jump at ≈ 85 minutes after crossing
Tc,grAl. In order to test whether these jumps are caused
by ionizing radiation [42–46] we measure three similar
gradiometric devices in the LNGS deep-underground fa-
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Figure 2. (a) Calibration of the external field using the periodicity of the non-gradiometric fluxonium spectrum. The colorplot
shows the phase of the reflection coefficient arg(S11) of the linear readout mode as a function of the external magnetic field
B⊥. The fundamental transition frequency of the fluxonium f01(Φ̄ext) crosses the readout mode several times, resulting in
repeated avoided crossings with a period B0 = 280 nT corresponding to a flux quantum Φ0 enclosed in the fluxonium loop.
(b) Left panel: gradiometric fluxonium initialized at the effective half-flux bias by cooling down in Binit = B0. Notice the
factor 120 reduced sensitivity of the gradiometric device to B⊥ in comparison to panel (a). Central panel: the time trace of
the phase response measured at B⊥ = 0. The corresponding cut is indicated in left panel by a vertical dashed line. The jump
of the frequency of the readout mode detected at ≈ 85 minutes after crossing Tc,grAl ≈ 2K corresponds to an escape of the
trapped flux. Right panel: gradiometric device after the flux escape. The direction of the avoided crossings demonstrates that
the fundamental fluxonium transition is found above (left) and below (right) the readout mode frequency in applied zero-field
B⊥ = 0. The small avoided crossings visible in the vicinity of B⊥ = 0 in the right panel correspond to two-photon transitions.
(c) Coherence of the gradiometric fluxonium after half-flux initialization: the qubit population inversion as function of time
for energy relaxation (left), Ramsey fringes (center) and Hahn-echo experiment (right). Zero inversion corresponds to the finite
population caused by thermal excitations at the fridge temperature of 20mK and other non-equilibrium processes. The black
lines indicate the numerical fit of the data (markers). Error bars in left panel show the measured standard deviation.

vices are around 1mm apart to reduce electromagnetic
interaction, the diameter of the field coil is more than
one order of magnitude larger, ensuring a homogeneous
field B⊥. For readout, both fluxonium atoms are disper-
sively coupled to dedicated readout modes by sharing a
small fraction of their loop inductance. The capacitor of
these two readout modes is designed in the form of a mi-
crowave antenna and couples them to the electric field of
a 3D copper waveguide sample holder similar to Ref. [24].

For both device geometries we derive effective lumped-
element circuit models (see Fig. 1 panels (b) and (c)).
Since the readout is implemented similarly, the capaci-
tance and inductance of the readout modes are denoted
Cr and Lr, respectively, and Ls is the shared inductance.
The non-gradiometric design has a single loop with a su-
perinductance Lq shunting the JJ (blue crossed-box sym-
bol). The gradiometric design has two shunt inductances
forming three loops: an outer loop with surface area
A = 50×150 µm2, and two inner loops with surface area
A/2. The inductance in each loop branch is denoted Li,
with the index i ∈ {1, 2, 3} indicating the corresponding
branch. The gradiometric atom can be mapped onto the

standard fluxonium circuit diagram shown in Fig. 1 (d)
using an effective flux bias Φ̄ext and an effective shunting
inductance L̄q (see S1).
The superconducting field coil is calibrated by mea-

suring the spectrum of the non-gradiometric device,
designed with the same loop area A, located on the
same substrate. Figure 2 (a) depicts the phase re-
sponse arg(S11) of the readout mode coupled to the non-
gradiometric fluxonium atom as a function of the probe
frequency fd and the external magnetic field B⊥, mea-
sured in close vicinity of the readout frequency fr =
7.445GHz. The fundamental transition frequency of the
fluxonium f01(Φ̄ext) oscillates between values below and
above the readout frequency, resulting in avoided-level-
crossings repeated with periodicity of B0 = 0.28 µT.
The gradiometric fluxonium can be initialized at

the half-flux effective bias by cooling the device down
through the metal-to-superconductor phase transition in
a static magnetic field Binit = B0 corresponding to a sin-
gle flux quantum enclosed in the outer fluxonium loop
(see S3). The magnetic field is ramped down at the base
temperature of the cryogenic refrigerator (20mK), well
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D. Gusenkova et al, 

Appl. Phys. Lett 120 054001 (2022)

F. De Dominicis, A.Mariani et al, 

Eur. Phys. Journ C 83, n.o 94 (2023)

How much can we improve the performance of qubits in low radioactivity environment?

https://pubs.aip.org/aip/apl/article/120/5/054001/2833060/Operating-in-a-deep-underground-facility-improves
https://link.springer.com/article/10.1140/epjc/s10052-023-11199-2


Fully characterise the response of qubits to radioactivity:


•Energy threshold


•Position-dependency 


•Impact of different coating/geometries on sensitivity

11 Tanay Roy - Fermilab11

The Device

CPW transmission 
line

Transmons

(/4 resonators

Substrate: HEMEX Sapphire

Wafer Dia Thickness

4 inch 650 um

3 inch 550 um

2 inch 432 um

Nb layer: 160 -200 nm
Au layer: <= 10 nm
Chip: 7.5 mm x 7.5 mm

General properties

LNGS - “Ieti”

What Next - 2025/…



What Next - 2025/…
If qubits are so sensitive to radioactivity… can we turn them into particle detectors? 


Preliminary results say so:



Ecosystem
Part of the SQMS Center at FermiLab: hundreds of researchers, 115 M$ budget, 
possibility of 3-6 months internship at FermiLab.

• LNGS area: F. De Dominicis*, F. Ferroni, D. 
Helis, L. Pagnanini, S. Pirro (head of the Ieti 
facility), A. Puiu


• Roma area: L. Cardani (head of the project), I. 
Colantoni, A. Cruciani, N. Casali, A. Mariani, 
V.Pettinacci, M. Vignati


• FNAL area: A. Grassellino (head of the SQMS 
center), D. van Zanten, A. Romanenko, T. Roy, 
S. Zhu. 

Come talk to him at the poster session!

https://sqmscenter.fnal.gov
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Contacts: prof. L. Pagnanini 


