SABRE @ LNGS

10th Astroparticle Physics Scienc Fair GSSI Feb 6th, 2024 Aldo Ianni INFN - LNGS

SABRE<u>Sodium-iodide with Active Background RejEction</u>

- The **scientific motivation** for SABRE is to verify the longstanding modulation effect shown by DAMA/LIBRA,
 - ✓ determination of modulation amplitude and phase with a better background than that of DAMA/LIBRA
 - ✓ this modulation finds possible justification in models of dark matter regardless of its interaction with the detector
- Findings
 - ✓ Observed annual modulation is of order 0.01 cpd/kg/keV (1 dru) in ROI [1,6]keV
 - $\checkmark\,$ Background in ROI is of order of 1 dru

Strategy in SABRE

- High signal-to-background ratio by ultra-high purity Nal(Tl) crystals
 ✓ aim to 0.1-0.3 dru in ROI
- North-South «twin» experiments at LNGS(Italy) and SUPL(Australia)
 ✓ Rule out seasonal effects
- Proof-of-Principle (PoP) at LNGS --- DONE!
 - \checkmark Exploit active background rejection with a liquid scintillator
 - ✓ Test crystals radio-purity

Nal(TI) crystal production for SABRE

- Crystals are grown from Astro Grade (developed in the framework of SABRE)
 ✓ a few ppt in U, Th and a few ppb in K and Rb
- The Bridgman method has been selected to mitigate the risk of contamination during growth
 ✓ molten material is sealed inside a cleaned crucible
- Crystal growth is performed by the industrial partner Radiation Monitoring Devices (RMD)
 ✓ some quality controls are performed prior to underground counting
- Zone refining purification of the powder is performed before growth in collaboration with the industrial partner MELLEN

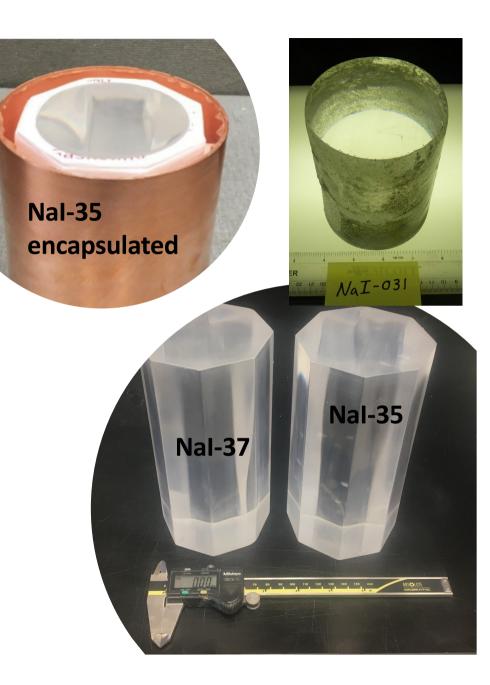
Zone refining of Nal powder

- Four runs with 900 gr of Astro Grade Nal powder have been performed at MELLEN, NH, USA
- Number of passes: 26 or 50
- Speed: 3.8cm/h and 5.08cm/h

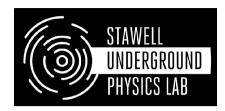
- Zone refiner
- Samples were taken along the length of the solid ingot and shipped for ICP-MS measurements

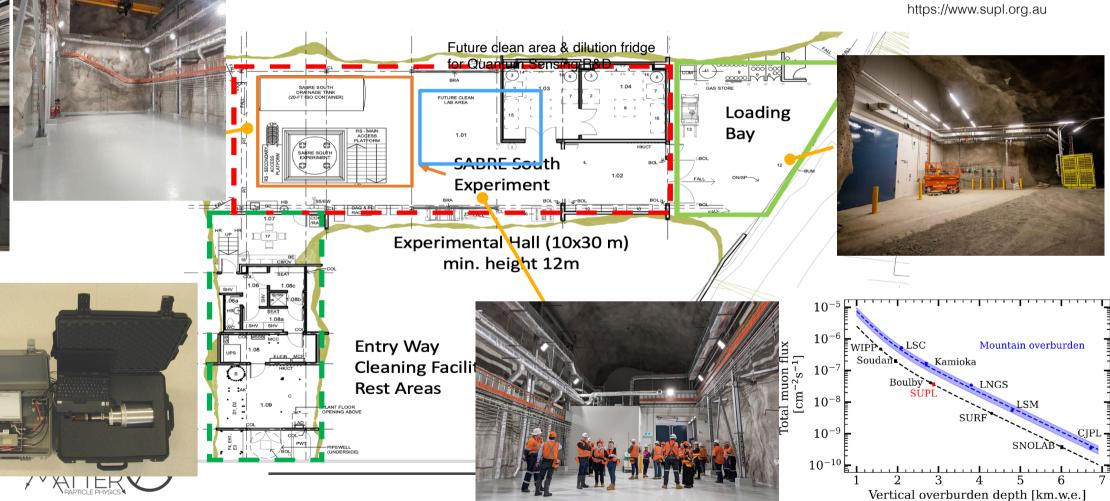
Sample	39K [ppb]	65Cu [ppb]	85Rb [ppb]	133Cs [ppb]	138Ba [ppb]	208Pb [ppb]
	LSC	LSC	LSC	LSC	LSC	LSC
powder	14.4	17	<0.8	36.7	<0.6	2
Zone 1	<4	<5	<0.8	<0.3	<0.5	<1
Zone 2	<4	<5	<0.8	<0.3	0.8**	<1
Zone 3	6.7	<5	<0.8	0.4	0.8**	<1
Zone 4	40	<5	<0.8	0.4	3.8	<1
Zone 5	540	234	1.3	447	10	<1

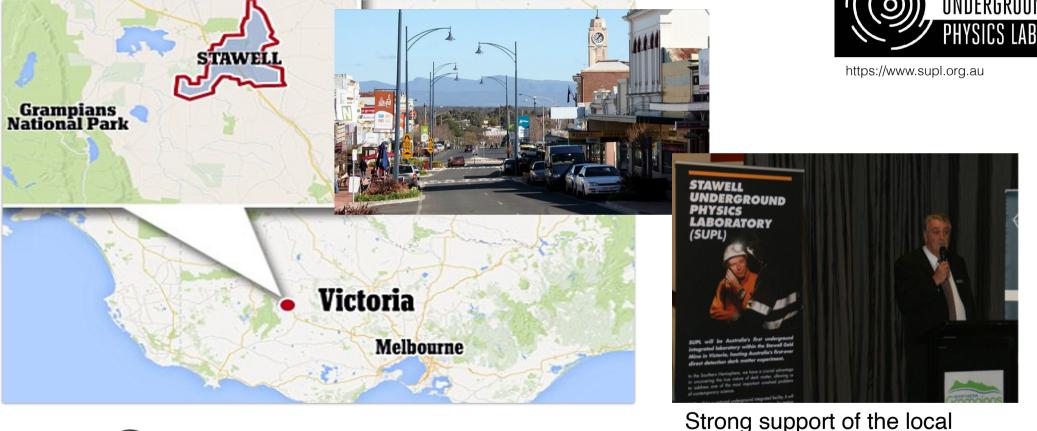
Ampoule



Broken ingot after ZR


Grown crystals underground at LNGS


- Nal-31 at LNGS since April 2019
- Nal-33 since August 2019, assembled in Princeton
- Nal-35 since May 2022, assembled at RMD
- Nal-37 since March 2022, naked and encapsulated at LNGS
- Nal-41 since December 2023, assembled at RMD and grown from chunks


SUPL 1025 m deep (~29 Helical drive access

1025 m deep (~2900 m water equivalent) with flat over burden
Helical drive access

Located in the active Stawell Gold Mine, 240 km west of Melbourne, Victoria, Australia First underground lab in the southern hemisphere

Strong support of the local community

STAWFII

Future activities

- Complete and characterize a 5 kg crystal after zone refining
 ✓ June 2024: crystal expected at LNGS
- Submit TDR for full scale experiment at LNGS
 - Baseline: ~50 kg
 - June 2024
- Start crystal production and characterization
 - Summer 2024

Thank you for your attention

For further questions write to: aldo.ianni@lngs.infn.it