Elements of Mathematical Foundations of Quantum Mechanics

Daniele Ferretti daniele.ferretti@gssi.it

December 12 and 14, 2023

1 EXERCISES

1.1 BANACH SPACES

Exercise 1.1 (Inverse Triangular Inequality). Given a normed space $(X, \|\cdot\|_X)$, show that for any $f, g \in X$ there holds

$$||f - g||_X \ge ||f||_X - ||g||_X|_X$$

Exercise 1.2. Let $(X, \|\cdot\|_X)$ be a Banach space. Show that the norm is continuous, namely, given $f \in X$

$$\forall \{f_n\}_{n\in\mathbb{N}} \subset X \text{ s.t. } f_n \xrightarrow[n\to\infty]{} f, \text{ one has } \|f_n\|_X \xrightarrow[n\to\infty]{} \|f\|_X.$$

Find an example for which the converse is false.

Exercise 1.3. Let $A \in \mathscr{B}(Y, Z)$ and $B \in \mathscr{B}(X, Y)$ with X, Y, Z normed spaces. Show that

$$\left\|AB\right\|_{\mathscr{L}(X,Z)} \le \left\|A\right\|_{\mathscr{L}(Y,Z)} \left\|B\right\|_{\mathscr{L}(X,Y)}.$$

Exercise 1.4 (Absolute Convergence). Let $(X, \|\cdot\|_X)$ be a Banach space and suppose $\{f_n\}_{n \in \mathbb{N}} \subset X$ be a sequence satisfying $\sum_{n \in \mathbb{N}} \|f_n\|_X < +\infty$. Then prove that $\sum_{n \in \mathbb{N}} f_n \coloneqq \lim_{N \to \infty} \sum_{n=0}^N f_n$ exists.

Exercise 1.5. Let the function f be represented by a power series with convergence radius R > 0

$$f(z) = \sum_{j \in \mathbb{N}} f_j z^j, \qquad |z| < R.$$

Moreover, let $A \in \mathscr{B}(X)$ be s.t. $||A||_{\mathscr{L}(X)} < R$. Show that

$$f(A) = \sum_{j \in \mathbb{N}} f_j A^j$$

exists and defines a bounded linear operator (Hint: exploit Exercises 1.3 and 1.4).

1.2 HILBERT SPACES

Exercise 1.6. Given 5 Hilbert space, show that

$$\|f+g\|_{\mathfrak{H}} = \|f\|_{\mathfrak{H}} + \|g\|_{\mathfrak{H}} \qquad \textit{iff} \qquad f = \alpha g, \, \alpha \geq 0 \quad \lor \quad g = 0.$$

$$S: \ell^2(\mathbb{N}) \longrightarrow \ell^2(\mathbb{N}), \qquad (a_1, a_2, a_3, \ldots) \longmapsto (0, a_1, a_2, \ldots)$$

satisfies $||Sa||_{\ell^2(\mathbb{N})} = ||a||_{\ell^2(\mathbb{N})}$. Is it unitary? Compute S^* .

Exercise 1.8 (Jacobi Operator). Let a and b be some real-valued sequences in $\ell^{\infty}(\mathbb{Z})$. Consider the operator

$$J: f_n \longmapsto a_n f_{n+1} + a_{n-1} f_{n-1} + b_n f_n, \qquad \{f_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}).$$

Prove that J is a bounded, self-adjoint operator.

Exercise 1.9. Show that $P: L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$, $f(x) \longmapsto \frac{1}{2}(f(x) + f(-x))$ is a projection. Compute its range and kernel.

Exercise 1.10. Let $A \in \mathscr{B}(\mathfrak{H})$. Show that A is normal iff

$$\|A\psi\|_{\mathfrak{H}} = \|A^*\psi\|_{\mathfrak{H}}, \qquad \forall \psi \in \mathfrak{H}.$$

Exercise 1.11. Let $U \in \mathscr{B}(\mathfrak{H})$. Prove that U is unitary iff $U^{-1} = U^*$.

Exercise 1.12. Given $A \in \mathscr{L}(\mathfrak{H}_1, \mathfrak{H}_2)$ closable and densely defined operator, $\psi \in \mathscr{D}(\overline{A})$ and $\{\psi_n\}_{n \in \mathbb{N}} \subset \mathscr{D}(A)$ s.t. $\psi_n \xrightarrow[n \to \infty]{} \psi$. Then, prove that $A\psi_n \xrightarrow[n \to \infty]{} \overline{A}\psi$.

Exercise 1.13. Suppose $\{\psi_n\}_{n\in\mathbb{N}} \subset \mathfrak{H}$ and $\{\varphi_n\}_{n\in\mathbb{N}} \subset \mathfrak{H}$ s.t. $\psi_n \xrightarrow[n\to\infty]{} \psi$ and $\varphi_n \xrightarrow[n\to\infty]{} \varphi$. Then show that

$$\lim_{n \to \infty} \langle \psi_n, \, \varphi_n \rangle_{\mathfrak{H}} = \langle \psi, \, \varphi \rangle_{\mathfrak{H}}$$

(Hint: every weakly convergent sequence is bounded).

Exercise 1.14. Let $\{\varphi_j\}_{j\in\mathbb{N}}$ be some orthonormal base for a complex Hilbert space \mathfrak{H} . Show that $A \in \mathscr{B}(\mathfrak{H})$ is completely characterized by its matrix elements

$$A_{jk} := \langle \varphi_j, \, A \varphi_k \rangle_{\mathfrak{H}}.$$

Then, write also the action of A assuming that $\{\varphi_i\}_{i \in \mathbb{N}}$ is a base of eigenvectors for A.

Exercise 1.15. Let M be a multiplication operator in $L^2(X, d\mu)$ by a μ -measurable function $f : X \longrightarrow \mathbb{C}$. Find proper conditions on f in such a way that

- *M* is bounded;
- *M* is self-adjoint.

Write the domain of self-adjointness for M.

Exercise 1.16. Let $A = -\frac{d^2}{dx^2}$, $\mathscr{D}(A) = \{f \in H^2(0,\pi) \mid f(0) = f(\pi) = 0\}$ and let $\psi(x) = \frac{x(\pi-x)}{2\sqrt{\pi}}$. Find the error in the following statement: since A is symmetric, one has $1 = \langle A\psi, A\psi \rangle_{L^2(0,\pi)} = \langle \psi, A^2\psi \rangle_{L^2(0,\pi)} = 0$.

2 PROBLEMS

Problem 2.1. Suppose to have a quantum particle confined in the segment [0, L] whose kinetic energy is given by the operator $K = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$, $\mathscr{D}(K) = C_c^{\infty}(0, L)$. Characterize every self-adjoint extension for K.

Then take into account the self-adjoint extensions implementing periodic-boundary conditions, Dirichlet and Neumann boundary conditions and compute the corresponding eigenvectors.

Let $\psi(x) = \sqrt{\frac{2}{L}}$, if $x \in (\frac{L}{4}, \frac{3L}{4})$ and 0 otherwise be a prepared state for three distinct systems described by each of the previously considered self-adjoint extensions.

- What is the expectation of the position of the particle in this state?
- What is the probability to measure the lowest possible energy? And what about the first excited state?
- What is the probability of finding the system in a given superposition of the first two energy levels (i.e. with probability q in the ground state and probability 1-q in the first excited state) after some time t has passed?

Problem 2.2. Consider a quantum particle in the Hilbert space $L^2(\mathbb{R}_+)$ whose energy is described by the Hamiltonian

$$H = -\frac{\hbar}{2m} \frac{d^2}{dx^2} - h \, \mathbb{1}_{[0,L]}, \qquad h > 0.$$

For which domains H is self-adjoint?

Take account of the Dirichlet boundary condition at the boundary and assume negative energies in order to find the conditions the eigenfunctions of H must satisfy. Compute the probability for which the particle can be found outside the well in terms of the energy.

Problem 2.3. A quantum particle in a crystal (consider it as a fixed point) can be found in two independent states $|\uparrow\rangle, |\downarrow\rangle$ whose energy levels are $a\hbar$ and $-a\hbar$, respectively for some frequency a > 0.

Given the initial state $\frac{1}{2}|\uparrow\rangle - \frac{\sqrt{3}}{2}|\downarrow\rangle$, compute the probability for the state to remain unchanged at a given time t and find when this quantity is maximized.

Now consider an observable S whose action consists in exchanging the two independent states, i.e.

$$S|\uparrow\rangle = |\downarrow\rangle, \qquad S|\downarrow\rangle = |\uparrow\rangle$$

and find its expectation as t varies.

In a following moment the system is found to be in the state $\frac{1}{\sqrt{2}}|\uparrow\rangle - \frac{1}{\sqrt{2}}|\downarrow\rangle$, since a measurement of the observable *S* obtained as outcome the value -1. What is the probability for this state to be in the lowest energy level? The next measure for the energy applied to the same state yields the value $-a\hbar$, but what is the probability for *S* to be still -1? Instead, what about the value +1?

Explain what is going on. (Hint: prove the following statement)

Given $A, B \in \mathscr{B}(\mathfrak{H})$ two self-adjoint operators there holds

 \nexists common o.n.b. of eigenvectors $\iff AB \neq BA$.