Elements of Mathematical Foundations of Quantum Mechanics

Daniele Ferretti
daniele.ferretti@gssi.it

December 12 and 14, 2023

1 EXERCISES

1.1 Banach Spaces

Exercise 1.1 (Inverse Triangular Inequality). Given a normed space $\left(X,\|\cdot\|_{X}\right)$, show that for any $f, g \in X$ there holds

$$
\|f-g\|_{X} \geq\left|\|f\|_{X}-\|g\|_{X}\right|
$$

Exercise 1.2. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. Show that the norm is continuous, namely, given $f \in X$

$$
\forall\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset X \text { s.t. } f_{n} \xrightarrow[n \rightarrow \infty]{ } f, \quad \text { one has } \quad\left\|f_{n}\right\|_{X} \xrightarrow[n \rightarrow \infty]{ }\|f\|_{X}
$$

Find an example for which the converse is false.
Exercise 1.3. Let $A \in \mathscr{B}(Y, Z)$ and $B \in \mathscr{B}(X, Y)$ with X, Y, Z normed spaces. Show that

$$
\|A B\|_{\mathscr{L}(X, Z)} \leq\|A\|_{\mathscr{L}(Y, Z)}\|B\|_{\mathscr{L}(X, Y)}
$$

Exercise 1.4 (Absolute Convergence). Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and suppose $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset X$ be a sequence satisfying $\sum_{n \in \mathbb{N}}\left\|f_{n}\right\|_{X}<+\infty$. Then prove that $\sum_{n \in \mathbb{N}} f_{n}:=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} f_{n}$ exists.

Exercise 1.5. Let the function f be represented by a power series with convergence radius $R>0$

$$
f(z)=\sum_{j \in \mathbb{N}} f_{j} z^{j}, \quad|z|<R
$$

Moreover, let $A \in \mathscr{B}(X)$ be s.t. $\|A\|_{\mathscr{L}(X)}<R$. Show that

$$
f(A)=\sum_{j \in \mathbb{N}} f_{j} A^{j}
$$

exists and defines a bounded linear operator (Hint: exploit Exercises 1.3 and 1.4).

1.2 Hilbert Spaces

Exercise 1.6. Given \mathfrak{H} Hilbert space, show that

$$
\|f+g\|_{\mathfrak{H}}=\|f\|_{\mathfrak{H}}+\|g\|_{\mathfrak{H}} \quad \text { iff } \quad f=\alpha g, \alpha \geq 0 \quad \vee \quad g=0
$$

Exercise 1.7. The operator

$$
S: \ell^{2}(\mathbb{N}) \longrightarrow \ell^{2}(\mathbb{N}), \quad\left(a_{1}, a_{2}, a_{3}, \ldots\right) \longmapsto\left(0, a_{1}, a_{2}, \ldots\right)
$$

satisfies $\|S a\|_{\ell^{2}(\mathbb{N})}=\|a\|_{\ell^{2}(\mathbb{N})}$. Is it unitary? Compute S^{*}.
Exercise 1.8 (Jacobi Operator). Let a and b be some real-valued sequences in $\ell^{\infty}(\mathbb{Z})$. Consider the operator

$$
J: f_{n} \longmapsto a_{n} f_{n+1}+a_{n-1} f_{n-1}+b_{n} f_{n}, \quad\left\{f_{n}\right\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})
$$

Prove that J is a bounded, self-adjoint operator.
Exercise 1.9. Show that $P: L^{2}(\mathbb{R}) \longrightarrow L^{2}(\mathbb{R}), \quad f(x) \longmapsto \frac{1}{2}(f(x)+f(-x))$ is a projection. Compute its range and kernel.

Exercise 1.10. Let $A \in \mathscr{B}(\mathfrak{H})$. Show that A is normal iff

$$
\|A \psi\|_{\mathfrak{H}}=\left\|A^{*} \psi\right\|_{\mathfrak{H}}, \quad \forall \psi \in \mathfrak{H}
$$

Exercise 1.11. Let $U \in \mathscr{B}(\mathfrak{H})$. Prove that U is unitary iff $U^{-1}=U^{*}$.
Exercise 1.12. Given $A \in \mathscr{L}\left(\mathfrak{H}_{1}, \mathfrak{H}_{2}\right)$ closable and densely defined operator, $\psi \in \mathscr{D}(\bar{A})$ and $\left\{\psi_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(A)$ s.t. $\psi_{n} \xrightarrow[n \rightarrow \infty]{ } \psi$. Then, prove that $A \psi_{n} \xrightarrow[n \rightarrow \infty]{ } \bar{A} \psi$.
Exercise 1.13. Suppose $\left\{\psi_{n}\right\}_{n \in \mathbb{N}} \subset \mathfrak{H}$ and $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}} \subset \mathfrak{H}$ s.t. $\psi_{n} \underset{n \rightarrow \infty}{ } \psi$ and $\varphi_{n} \underset{n \rightarrow \infty}{ } \varphi$. Then show that

$$
\lim _{n \rightarrow \infty}\left\langle\psi_{n}, \varphi_{n}\right\rangle_{\mathfrak{H}}=\langle\psi, \varphi\rangle_{\mathfrak{H}}
$$

(Hint: every weakly convergent sequence is bounded).
Exercise 1.14. Let $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ be some orthonormal base for a complex Hilbert space \mathfrak{H}. Show that $A \in \mathscr{B}(\mathfrak{H})$ is completely characterized by its matrix elements

$$
A_{j k}:=\left\langle\varphi_{j}, A \varphi_{k}\right\rangle_{\mathfrak{H}}
$$

Then, write also the action of A assuming that $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ is a base of eigenvectors for A.
Exercise 1.15. Let M be a multiplication operator in $L^{2}(X, d \mu)$ by a μ-measurable function $f: X \longrightarrow \mathbb{C}$. Find proper conditions on f in such a way that

- M is bounded;
- M is self-adjoint.

Write the domain of self-adjointness for M.
Exercise 1.16. Let $A=-\frac{d^{2}}{d x^{2}}, \mathscr{D}(A)=\left\{f \in H^{2}(0, \pi) \mid f(0)=f(\pi)=0\right\}$ and let $\psi(x)=\frac{x(\pi-x)}{2 \sqrt{\pi}}$. Find the error in the following statement: since A is symmetric, one has $1=\langle A \psi, A \psi\rangle_{L^{2}(0, \pi)}=\left\langle\psi, A^{2} \psi\right\rangle_{L^{2}(0, \pi)}=0$.

2 Problems

Problem 2.1. Suppose to have a quantum particle confined in the segment $[0, L]$ whose kinetic energy is given by the operator $K=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}, \mathscr{D}(K)=C_{c}^{\infty}(0, L)$. Characterize every self-adjoint extension for K.
Then take into account the self-adjoint extensions implementing periodic-boundary conditions, Dirichlet and Neumann boundary conditions and compute the corresponding eigenvectors.
Let $\psi(x)=\sqrt{\frac{2}{L}}$, if $x \in\left(\frac{L}{4}, \frac{3 L}{4}\right)$ and 0 otherwise be a prepared state for three distinct systems described by each of the previously considered self-adjoint extensions.

- What is the expectation of the position of the particle in this state?
- What is the probability to measure the lowest possible energy? And what about the first excited state?
- What is the probability of finding the system in a given superposition of the first two energy levels (i.e. with probability q in the ground state and probability $1-q$ in the first excited state) after some time t has passed?

Problem 2.2. Consider a quantum particle in the Hilbert space $L^{2}\left(\mathbb{R}_{+}\right)$whose energy is described by the Hamiltonian

$$
H=-\frac{\hbar}{2 m} \frac{d^{2}}{d x^{2}}-\mathrm{h} \mathbb{1}_{[0, L]}, \quad \mathrm{h}>0
$$

For which domains H is self-adjoint?
Take account of the Dirichlet boundary condition at the boundary and assume negative energies in order to find the conditions the eigenfunctions of H must satisfy. Compute the probability for which the particle can be found outside the well in terms of the energy.

Problem 2.3. A quantum particle in a crystal (consider it as a fixed point) can be found in two independent states $|\uparrow\rangle,|\downarrow\rangle$ whose energy levels are $a \hbar$ and $-a \hbar$, respectively for some frequency $a>0$.
Given the initial state $\frac{1}{2}|\uparrow\rangle-\frac{\sqrt{3}}{2}|\downarrow\rangle$, compute the probability for the state to remain unchanged at a given time t and find when this quantity is maximized.
Now consider an observable S whose action consists in exchanging the two independent states, i.e.

$$
S|\uparrow\rangle=|\downarrow\rangle, \quad S|\downarrow\rangle=|\uparrow\rangle
$$

and find its expectation as t varies.
In a following moment the system is found to be in the state $\frac{1}{\sqrt{2}}|\uparrow\rangle-\frac{1}{\sqrt{2}}|\downarrow\rangle$, since a measurement of the observable S obtained as outcome the value -1 . What is the probability for this state to be in the lowest energy level? The next measure for the energy applied to the same state yields the value $-a \hbar$, but what is the probability for S to be still -1 ? Instead, what about the value +1 ?
Explain what is going on. (Hint: prove the following statement)

Given $A, B \in \mathscr{B}(\mathfrak{H})$ two self-adjoint operators there holds
\nexists common o.n.b. of eigenvectors $\Longleftrightarrow A B \neq B A$.

