The era of Multi-Messenger astrophysics

GW State of the Art

GWs and photons provide complementary information about the physics of the transient

GW

CBCs

- Spin
- System orientation
- $d_L(z)$
- $\mathscr{R}(z)$

EM

- Arcsec sky localization
- Host galaxy
- Emission process
- Acceleration mechanism

Z

How?

CCSNe Isolated NS

Why is this so important?

GW170817: one event to rule them all

GW170817: one event to rule them all

But what about other CBCs?

GW190521

The primary falls in the mass gap by (pulsational) pairinstability SN

m1:
$$85^{+21}_{-14}$$
 M \odot ,
m2: 66^{+17}_{-18} M \odot

BBH

GW190521

The Zwicky Transient Facility (ZTF) detected a candidate optical counterpart in AGN J124942.3+344929

Dynamical channel?

Preferred common origin of the two transients

BBH

NSBH

- GW event observed by the two LIGO detectors and Virgo
- m1: 23.2^{+1.1}_{-1.0} M \odot ; m2: 2.59^{+0.08}_{-0.09} M \odot
- BBH or NS-BH merger?
- 90 % C.R.: 18.5 deg2; DL= 241_{-45}^{+41} Mpc
- No EM counterpart

- First direct evidence that NS-NS mergers are progenitors of at least a fraction of short GRBs
- First evidence for a structured jet for GRBs
- First unambiguous observational evidence for a kilonova
- First observation of a kilonova in association with both a short GRB and a GW event
- Evidence for NS-NS mergers as heavy element factories

- Do all NS-NS mergers produce short GRBs?
- Are KNe associated to every short GRB?
- What is the GRB central engine/NS-NS merger outcome?
- Do NS-BH and BBH mergers have EM counterparts?
- ...and much more!

On the sky localization

Andrea Cozzumbo

- 0.9625
- 0.9215
- 0.8805
- 0.8395
- 0.7985
- 0.7575
- 0.7165
- 0.6755
- 0.6345
- 0.5935

	- 0.9504
	- 0.8958
	- 0.8412
	- 0.7866
	- 0.7320
	- 0.6774
	- 0.6228
	- 0.5682
	- 0.5136
	0.4590
G	C-TH

Snap into the present / near future

3G detectors and Observational strategies

Searching where nobody searches

GRB weirdness

Kouvelitou et al. 1993

Missing pieces in the GRB physics

Misclassification

GRB weirdness... can be useful

GRB211211A and GRB230307A: long GRBs from CBC?

GRB weirdness... can be useful

GeV and (possibly) sub-TeV emission can be expected from CBC at even later times!

The GeV emission is in EXCESS with respect to synchrotron emission

External Inverse Compton

- Detection of counterparts are dependent on MeV detectors but Mev detectors (Fermi/GBM) have larger localization area
- Swift/BAT ~100 keV can localize better but has 30% less detection than GBM
- Requirement: detectors with large FoV (>10 sq. deg.) and better localization (~1-deg)
- GeV/ TeV facilities can help in this regard!

NEW OBSERVATIONAL STRATEGY

- Search for GeV excess over the GW patch

GeV

• Making grids of ~0.5 deg: psf of Fermi/LAT @ 1 GeV

3G detectors and Observational strategies

GW pre-alert strategy

10-3

Detector	Ω [deg ²]	All orientations			
		15 min	5 min	1 min	0 min
ET + CE	100	442	1325	5075	123303
ET	100	90	130	208	436

Detector	Ω [deg²]	Viewing angle (<10 ⁰)			
		15 min	5 min	1 min	0 min
ET + CE	100	21	71	314	3376
ET	100	3	6	13	40

- ET, CE, CTA synergy to help discovering prompt emission of GRBs in VHE gamma-rays: about 20 VHE counterparts to be detected using ~5% of the CTA time.
- Pre-alert scheme can be applied during O5 with large FoV instruments

Cosmology with standard sirens

Is that really worth it?

(Spoiler: yes!)

The big skeleton in the closet: $\iota - d_L$ degeneracy

The big skeleton in the closet: $\iota - d_L$ degeneracy

Break $\iota - d_L$ degeneracy

Polarization

Precession

NSBH mergers can provide more precise Hubble constant measurement if their astrophysical rate is constrained.

• EM counterpart

A factor of 5 to 10 fewer events are required to reach the same Hubble constant precision if the viewing angle is constrained.

Network of detectors

EM selection bias!

Multi-probe cosmology is the key!

ModIC with Bright Sirens for 3G detectors

Cozzumbo+, in prep.

New sources @ higher z

Thank you for the attention!

