ModIC 2024 - Model-Independent Cosmology with gravitational waves, large-scale structures, and high-energy surveys

Dark Sirens Cosmology with neutral hydrogen intensity mapping

Ulyana Dupletsa

in collaboration with Jan Harms, Riccardo Murgia and Andrej Obuljen

GRAN SASSO SCIENCE INSTITUTE

Scuola Universitaria Superiore

G

SCHOOL OF ADVANCED STUDIES

A brief summary

085ERVING 01 2015 - 2016			02 2016 - 2017			- Alexandre				03a +b 2019 - 2020		
36 31	• • • 23 • 14	14 7.7	31 20	11 7.6	50 34	35 24	31 25	• • 15 1.3	35 27	40 29	88 • ²²	25 18
63 CW150914	36 GW151012	21 GW151226	49 GW170104	18 CW170609	80 GW170729	56 CW170809	53 GW170814	≤ 2.8 cw170817	60 GW170818	65 GW170823	105 GW190403_051519	41 GW190408_181802
30 8.3	35 24	48 • 32	41 32	• • 2 14	107 77	43 28	23 13	36 18	39 28	37 25	66 • 41	95 69
37 CW190412	56 GW190413_052954	76 CW190413_134308	70 GW190421_213856	3.2 cw190425	175 CW190426_190642	69 GW190503_185404	35 GW190512_180714	52 GW190513_205428	65 CW190514_065416	59 GW190517_055101	101 GW190519_153544	156 CW190521
42 3 3	* * * 23	69 • 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 GW190521_074359	56 CW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 cw190701_203306	99 cw190706_222641	19 cw190707_093326	30 GW190708_232457	55 GW190719_215514	20 GW190720_000836	17 GW190725_174728	64 cw190727_060333
12 8.1	42 29	* * 37 • 27	48 32	9 23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21 16
20 cw190728_064510	67 CW190731_140936	62 GW190803_022701	76 CW190805_211137	26 CW190814	55 GW190828_063405	33 CW190828_065509	76 cw190910_112807	57 GW190915_235702	66 CW190916_200658	11 GW190917_114630	13 GW190924_021846	35 GW190925_232845
40 23	81 24	12 7.8			65 47	29 5.9	12 8.3	53 24	n 6.7	27 19	12 8.2	25 18
61 cw190926_050336	102 GW190929_012149	19 GW190930_133541	19 CW191103_012549	18 GW191105_143521	107 cw191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 GW191129_134029	45 GW191204_110529	19 CW191204_171526	41 GW191215_223052
	31 1.2	45 0 35	49 3 7		36 28		42 33	34 29	10 7.3	38 27	51 12	36 · 27
19 GW191216_213338	32 GW191219_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 cw200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 cw200209_085452
0 24 2.8	51 0 ³⁰	* * 38 * 28	87 61	39 28	40 33	19 14	● · 38 20	28 15	36 14	34 28		34 14
27 GW200210_092254	78 GW200216_220804	62 cw200219_094415	141 GW200220_061928	64 GW200220_124850	69 GW200224_222234	32 GW200225_060421	56 GW200302_015811	42 cw200306_093714	47 CW200308_173609	59 GW200311_115853	20 GW200316_215756	53 cw200322_091133

Note that the maxe exemption is seen here do not include uncertainties which is any the final maxe admentations apper than the same of the primary and secondary matters in admarts, the final maxe than the primary place the secondary mass. The events lead here was one of the thresholds for detection. They either have a possibility of being administration beat final we no parts this second accurate the primary place the secondary the trans-

Measuring the expansion: a distance-redshift relation

$$d_{\rm L} = c(1+z) \int_0^z \frac{dz'}{H(z')}$$

Gravitational Waves

Standard sirens

• Gravitational waves are self-calibrated distance indicators: **cosmic rulers**

$$h_{+} \propto \frac{c}{d_{\rm L}} \left(\frac{G\mathcal{M}_z}{c^3}\right)^{5/6} \frac{1}{f^{7/6}} \left(\frac{1+\cos^2 \iota}{2}\right) e^{i\Psi_{+}}$$
$$h_{\times} \propto \frac{c}{d_{\rm L}} \left(\frac{G\mathcal{M}_z}{c^3}\right)^{5/6} \frac{1}{f^{7/6}} \cos \iota e^{i\Psi_{\times}}$$

• No direct redshift measurement from the gravitational signal

Standard sirens

• Gravitational waves are self-calibrated distance indicators: cosmic rulers

$$h_{+} \propto \frac{c}{d_{\rm L}} \left(\frac{G\mathcal{M}_{z}}{c^{3}}\right)^{5/6} \frac{1}{f^{7/6}} \left(\frac{1+\cos^{2}\iota}{2}\right) e^{i\Psi_{+}}$$
$$h_{\times} \propto \frac{c}{d_{\rm L}} \left(\frac{G\mathcal{M}_{z}}{c^{3}}\right)^{5/6} \frac{1}{f^{7/6}} \cos \iota e^{i\Psi_{\times}}$$

• No direct redshift measurement from the gravitational signal

- → Methods based on complementary observations:
 - Direct EM counterpart with GW170817 (bright sirens)
 - Statistical association with galaxy catalogs (dark sirens)
 - Cross-correlations with LSS tracers (hydrogen)

- → Methods based on astrophysical models:
 - Source-frame mass modeling
 - Knowledge of NS EOS and tidal deformability measurements

- → Methods based on complementary observations:
 - Direct EM counterpart with GW170817 (bright sirens)
 - Statistical association with galaxy catalogs (dark sirens)
 - Cross-correlations with LSS tracers (hydrogen)

- → Methods based on astrophysical models:
 - Source-frame mass modeling (spectral sirens)
 - Knowledge of NS EOS and tidal deformability measurements

What we would like to do

Multi-tracing approach

60

+

Resolved GW events from stellar-mass BBHs

Next-generation GW observatories: ET (+ CE) Intensity mapping of 21cm line from neutral hydrogen

Future large scale structure surveys as SKAO Cross - correlating different tracers of the underlying dark matter distribution

Multi-tracing approach

Resolved GW events from stellar-mass BBHs

Next-generation GW observatories: ET (+ CE) Intensity mapping of 21cm line from neutral hydrogen

Future large scale structure surveys as SKAO Cross - correlating different tracers of the underlying dark matter distribution

Multi-tracing approach

Resolved GW events from stellar-mass BBHs

Next-generation GW observatories: ET (+ CE) Intensity mapping of 21cm line from neutral hydrogen

Future large scale structure surveys as SKAO Cross - correlating different tracers of the underlying dark matter distribution

- Neutral hydrogen overdensity maps (21cm line)
- Tested against IllustrisTNG
- Precision at $5h^{-1}$ Mpc

Reconstructing the HI light cone

Gravitational data

- → **BBH population** [Mapelli's group]:
 - **10 years** of forecast for XG generation (~1e6 events)
 - Fiducial population model

How should we distribute BBH events:

- \rightarrow Isotropically?
- → Following the HI field?
- \rightarrow ...

Distributing BBHs following HI field

- → Extract redshift information from HI maps
- → Extract distance information from BBHs
- \rightarrow Inference on H(z)

- → Extract redshift information from HI maps
- → Extract distance information from BBHs
- \rightarrow Inference on H(z)

Hierarchical Bayesian inference (?)

Hierarchical Bayesian Inference

2-level inference: single events level + population level

posterior on hyperparameters

Likelihood of the prior on sample of observed GW events

hyperparameters

 $p(H_0|\{\vec{x}_i\}) \propto \mathcal{L}(\{\vec{x}_i\}|H_0)\pi(H_0)$

 $H_0 \longrightarrow H(z)$

[Mandel et al. 2019, Gair et al. 2023]

- Hi-Fi mocks does not simulate the whole sky for HI field
- ♦ GWs (BBHs) are all-sky
- Probability of detection based on SNR
- → GW likelihood:
 - Full posterior on distance
- → Redshift probability modeling

- Hi-Fi mocks does not simulate the whole sky for HI field
- ♦ GWs (BBHs) are all-sky
- Probability of detection based on SNR

→ GW likelihood:

- Full posterior on distance
- → Redshift probability modeling

- Hi-Fi mocks does not simulate the whole sky for HI field
- ♦ GWs (BBHs) are all-sky
- Probability of detection based on SNR
- → GW likelihood:
 - Full posterior on distance
- → Redshift probability modeling

- Hi-Fi mocks does not simulate the whole sky for HI field
- ♦ GWs (BBHs) are all-sky
- Probability of detection based on SNR
- → GW likelihood:
 - Full posterior on distance
- → Redshift probability modeling

Other effects?

Let's discuss!