Model-independent Cosmology: summary talk

IFPU, Trieste 16/05/2024

Status of Modern Cosmology

Rodrigo Calderón

ACDM : Remarkably accurate description of CMB anisotropies + many more

 $\{\theta_s, \omega_c, \omega_b, \tau\}$

 $\{n_s, A_s\}$

Energy Content

Initial Conditions

Although successful, still phenomenological

Collection of (reasonable) assumptions:

•	Flat FLRW: (Isotropy + Homogeneity)
•	Gravity = GR
•	$Dark Energy = \Lambda$
•	(Cold) Dark Matter
•	Nearly Adiabatic / Scale-invariant
	fluctuations spectrum

The H₀ tension

Riess, Nat. Rev. Phys. 2 (2020) 10

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

Indirect

- Model-dependent: Acoustic scale $\theta_s = \frac{l_s}{d_A}$
- Relies on well-understood (linear) physics

Direct

- Model-independent
- Relies on astrophysics

Rodrigo Calderón

DARK ENERGY **SPECTROSCOPIC INSTRUMENT**

U.S. Department of Energy Office of Science

DESI: Mayall 4m Telescope @ Kitt-peak (Arizona)

- 30 Million Galaxies ~ 5000 Spectra with each exposure !
 - Accurate z-estimates
 - $(z, \phi, \theta) \rightarrow$ Compute n-point statistics
- Derive constraints on your favorite cosmological model! •

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

DESI: Mayall 4m Telescope @ Kitt-peak (Arizona)

- 30 Million Galaxies ~ 5000 Spectra with each exposure !
 - Accurate z-estimates
 - $(z, \phi, \theta) \rightarrow$ Compute n-point statistics
- Derive constraints on your favorite cosmological model!

Sensitive to new physics in mainly two ways:

Modified Expansion

$$\frac{H^2(z)}{H_0^2} = \Omega_m a^{-3} + (1 - \Omega_m)$$

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

DESI: Mayall 4m Telescope @ Kitt-peak (Arizona)

- 30 Million Galaxies ~ 5000 Spectra with each exposure !
 - Accurate z-estimates
 - $(z, \phi, \theta) \rightarrow$ Compute n-point statistics
- Derive constraints on your favorite cosmological model!

Sensitive to new physics in mainly two ways:

Modified Expansion

Modified Growth

$$\frac{H^2(z)}{H_0^2} = \Omega_m a^{-3} + (1 - \Omega_m) f_{\text{DE}}(z) \quad f' + \left(f + 2 + \frac{h'}{h}\right)$$

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

Part I: DESI

Redshift-space distortions (RSD):

$$f\sigma_8(z) = \sigma_{8,0} (1+z) \frac{\delta'}{\delta}$$

Clustering measurements :

- Transversal $d_A(z)/r_s$
- Radial
- $H(z) r_s$

0 $f = \frac{3}{2} \Omega_m(z) \mu(z)$

Part II: Baryon Acoustic Oscillations

From the distribution of galaxies & quasars, to cosmological constraints

Rodrigo Calderón

"Compressed Parameters"

"Alcock-Paczyński" **Parameters**

Transverse direction

 $\frac{A}{r_{\perp}} = \alpha_{\perp} \frac{D_{M}^{\text{fid}}}{r_{d}^{\text{fid}}} \qquad D_{M}(z) \propto \int \frac{dz}{H(z)}$

Isotropic scaling of the BAO

 $\alpha_{\rm iso} = (\alpha_{\perp}^2 \alpha_{\parallel})^{1/3}$

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

Line of sight direction

$$\frac{D_H}{r_d} = \alpha_{||} \frac{D_H^{\text{fid}}}{r_d^{\text{fid}}}$$

Alternatively,

$$\alpha_{\rm AP} = \frac{\alpha_{||}}{\alpha_{\perp}} = \frac{D_H}{D_M} \frac{D_M^{\rm fid}}{D_M}$$

Padmanabhan et al. (2012) MNRAS

Rodrigo Calderón

Baryon Acoustic Oscillations

- The BAO feature is expected to be isotropic !
- Non-linear gravitational evolution introduce anisotropies along longitudinal/transversal directions
- \rightarrow Broadening of the BAO peak in 2pt correlation function
- By reconstructing the velocity field, we can "undo" the effect of gravity/non-linearities.
- \rightarrow Increase significance of the detection !

Pre vs post-reconstruction

Rodrigo Calderón

Redshift Space Distortions

J. Kuruvilla, C. Porciani - MNRAS (2018)

Rodrigo Calderón

• Observations are done in redshift-space

- Introduce additional anisotropies in 2PCF
 - → Large-scales: "Kaiser" effect
 - → Small-scales : "Finger-of-god" effect
- Can be used a probe of gravity !
- \rightarrow Measurements of growth: $f\sigma_8(z)$

Rodrigo Calderón

DESI vs SDSS

Already the largest BAO dataset ever ! 5.7 Million individual redshifts Effective cosmic volume $V_{\rm eff} = 18 \ {\rm Gpc}^3$ ~3x bigger than SDSS

> Merely first year of data First blind analysis ! (At the catalogue level)

Part III: Cosmological Implications

Rodrigo Calderón

Distance measurements

16/05/2024 - ModIC Workshop @ IFPU

Varying equation of state $w(a) = w_0 + w_a(1 - a)$

2.5 σ DESI+CMB+PantheonPlus

 3.5σ

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

DESI+CMB+Union3

3.9 σ DESI+CMB+DESY5

DESI 2024: Reconstructing Dark Energy using Crossing Statistics with DESI DR1 BAO data

R. Calderon⁽⁰⁾,¹ K. Lodha⁽⁰⁾,^{1,2} A. Shafieloo⁽⁰⁾,^{1,2} E. Linder⁽⁰⁾,^{3,4,5} W. Sohn,¹ A. de Mattia,⁶ J. L. Cervantes-Cota¹,⁷ R. Crittenden,⁸ T. M. Davis^(D), M. Ishak^(D), A. G. Kim^(D), W. Matthewson, 1 G. Niz^{(D},^{11,12} S. Park^{(D},^{1,2} J. Aguilar,³ S. Ahlen^{(D},¹³ S. Allen,^{14,15} **D.** Brooks,¹⁶ **T.** Claybaugh,³ **A.** de la Macorra[®],¹⁷ **A.** Dey[®],¹⁸ **B.** Dey_{0}^{19} **P.** $Doel_{16}^{16}$ **J. E.** Forero-Romero_ 0 , 20,21 E. Gaztañaga,^{22,8,23} S. Gontcho A Gontcho[®],³ K. Honscheid,^{24,25,26} C. Howlett⁰,⁹ S. Juneau,¹⁸ A. Kremin⁰,³ M. Landriau⁰,³ L. Le Guillou^(D),²⁷ M. E. Levi^(D),³ M. Manera^(D),^{28,29} R. Miquel,^{30,29} J. Moustakas^(D),³¹ J. A. Newman^(D),¹⁹ N. Palanque-Delabrouille^(D),^{6,3} W. J. Percival^(D),^{32,33,34} C. Poppett,^{3,4,5} F. Prada^(D),³⁵ M. Rezaie^(D),³⁶ G. Rossi,³⁷ V. Ruhlmann-Kleider[®],⁶ E. Sanchez[®],³⁸ D. Schlegel,³ M. Schubnell,^{39,40} H. Seo 0 ,⁴¹ D. Sprayberry,¹⁸ G. Tarlé 0 ,⁴⁰ P. Taylor,²⁶ M. Vargas-Magaña⁽¹⁾,¹⁷ B. A. Weaver,¹⁸ P. Zarrouk⁽¹⁾,²⁷ **H. Zou**,⁴²

Affiliations are in Appendix F

E-mail: calderon@kasi.re.kr, shafieloo@kasi.re.kr

Rodrigo Calderón

Part IV: Beyond wow CDM

Chebychev Polynomial expansion

$$w(z) \equiv -\sum_{n=0}^{N} C_n T_n(x)$$

Form an (orthogonal) basis spanning the space of functions

$$x \equiv 2\frac{z}{z_{\text{max}}} - 1 \in [-1,1]$$

$$T_0 = 1 , T_1 = x$$

$$T_2 = 2x^2 - 1 , T_3 = 4x^3 - 3x$$

Rodrigo Calderón

Modeling of w(z)

Chebychev Polynomial expansion

$$w(z) \equiv -\sum_{i=0}^{N=3} C_i T_i(x)$$

$$f_{\rm DE}(z) \equiv \exp\left(\int_{0}^{z} 3[1+w(z')]d\ln(1+z')\right)$$

V. Sahni, A. Shafieloo and A. A. Starobinsky (2008)

$$Om(z) \equiv \frac{h^2(z) - 1}{(1+z)^3 - 1}$$

$$q(z) \equiv -\frac{\ddot{a}a}{\dot{a}^2} = -\frac{\dot{H}}{H^2} - 1 = \frac{d\ln H}{d\ln(1+z)} - 1$$

m(z)2.01.5 $f_{\rm DE}(z)$ 0.51.10 $^{1.05}_{MODV} \eta^{1.00}_{0.95}$ 1.00.8(z) 0.6 U 0.4 U 0.40.20.5q(z)0.0-0.50.0

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - arXiv: 2405.04216

20

Modeling of $f_{DE}(z) \equiv \rho_{DE}(z)/\rho_{DE,0}$

Chebychev Polynomial expansion

$$f_{\text{DE}}(z) \equiv \sum_{i=0}^{N} C_i T_i(x)$$

$$C_0 = 1 - \sum_{i=1}^{N=3} C_i T_i (x = -1)$$

$$= 1 - \sum_{i=1}^{N=3} C_i \times (-1)^i$$

$$q(z) \equiv -\frac{\ddot{a}a}{\dot{a}^2} = -\frac{\dot{H}}{H^2} - 1 = \frac{d\ln H}{d\ln(1+z)} - 1$$

 $f_{\mathrm{DE}}(z)$ $\Omega_{\mathrm{DE}}(z)$ 1.1(${
m MODV}^{1.0}_{MODV} {
m M}^{1.00}_{0.95}$ 0.6 $(z) \frac{m(z)}{mO}$ 0.30.5d(z)-0.0.0

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - arXiv: 2405.04216

R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - arXiv: 2405.04216

Rodrigo Calderón

Comparison with $w_0 w_a$ CDM

R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - arXiv: <u>2405.04216</u>

16/05/2024 - ModIC Workshop @ IFPU

Rodrigo Calderón

Seems w₀w_aCDM is good enough DESI + Union3

 χ^2 "saturates" at 2 d.o.f

Constraints on H_0r_d

R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - arXiv: 2405.04216

Rodrigo Calderón

Comparison with (SDSS+DESI) BAO

Improvement in fit

Individual expansion histories **Improving over** ΛCDM

 $\Delta \chi^2 \equiv \Delta \chi^2_{w(z)} - \Delta \chi^2_{\Lambda \text{CDM}}$

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - arXiv: 2405.04216

$$f_{\text{DE}}(z) \equiv \frac{\rho_{\text{DE}}(z)}{\rho_{\text{DE},0}} \sim \mathcal{N}\left(\bar{f} = 1, K = k(\sigma_f, \ell_f)\right)$$

$$\frac{H^2(z)}{H_0^2} = \Omega_m a^{-3} + (1 - \Omega_m) f_{\text{DE}}(z)$$

Modified Growth

Calderón, L'Huillier, Polarski, Shafieloo & Starobinsky - Phys. Rev. D 108, 023504

Rodrigo Calderón

16/05/2024 - ModIC Workshop @ IFPU

Modified Poisson Equation

$$-\frac{k^2}{a^2}\phi = 4\pi G_{\rm eff}(z)\rho_m\delta_m$$

$$\mu(z;\sigma_f,\ell_f,z_c) \sim \mathcal{N}\left(\bar{f}=1,\,k(\sigma_f,\ell_f)\right)$$

• Successful reconstruction of 2 phenomenological profiles for $\mu(z) \equiv \frac{G_{\text{eff}}(z)}{G}$ Unbiased estimation of $\sigma_{8.0}$! • Posteriors of the hyperparameters contains ۲ valuable information

New physics!

 $\mu \neq 1$

Rodrigo Calderón

Some possible research directions

Late-time reconstruction of the expansion history Bright & Dark Sirens x LSS (HI-IM) Robust model-independent determination of H_0

Early-Universe changes to the expansion (& growth) history Implications for the Hubble and S_8 tensions Physics prior to recombination Testing non-standard inflationary scenarios with EFTofLSS

Gravitational Waves Population studies/Modeling Mass-distributions Testing the (an)isotropy of the Universe Model-independent tests of gravity

 $h_{p}'' + (2 + \alpha_{M}) \mathcal{H} h_{p}' + (1 + \alpha_{T}) k^{2} h_{p} = \Pi_{p}$

Rodrigo Calderón

$$d_L^{\rm GW}(z) = d_L^{\rm EM}(z) \, \exp\left(\frac{1}{2} \int_0^z \alpha_M(\tilde{z}) \, d\ln(1+\tilde{z})\right)$$

Summary & prospects

More constraining power demands more careful analyses: Scrutiny for systematics and confirmation biases

BAO is one of the most mature probes of modern cosmology Distance measurements that can be used to test alternative cosmological models Direct-fit/Full-shape power spectrum analysis on the way (RSD)!

Year 3 data acquisition complete. Analysis on the way!

Distance measurements that can be used to test alternative cosmological models

calderon@kasi.re.kr

16/05/2024 - ModIC Workshop @ IFPU

Rodrigo Calderón

Tantalizing hints of an evolving dark energy component: ~ $2.5 - 4\sigma$ deviation from ($w_0 = -1$, $w_a = 0$)

