

Cosmology with black hole oinaries

dark sirens, anisotropies, & stochastic methods

Arianna Renzini

Trieste, IFPU

14 May 2024

Gravitational-wave zoology

Template-based search

bursts

Soubrette/Istock/Getty Images Plus

continuous waves

Persistent

stochastic backgrounds

Unmodelled search

BBHS & cosmology

Gravitational-wave zoology

Template-based search

Soubrette/Istock/Getty Images Plus

stochastic backgrounds

Unmodelled search

BBHS & cosmology

recap of LVK GW detection history/plans: first NSBH!

first BBH!

first BNS!

Arianna Renzini

probably more population studies...

...GWB?

population studies!

The future (on the ground): 3G

Extend the depth of ground surveys up to $z \approx 20 \longrightarrow$ resolve all BBHs!

- BNS/BHNS foreground and background
- pop III / high z BBHs

- cosmological signals
- primordial BBHs

• • •

Cosmological information in GWs from BBHs

measured gravitational wave:

Arianna Renzini

 $h_{GW}(m_1, m_2, s_1, s_2, d_L, \theta, \phi, \phi)$

distance

Location

Cosmological information in GWs from BBHs

measured gravitational wave:

inherent degeneracy

$$m_{det} = (1 + z)$$
$$d_L = 1 + z \int_0^z z_{L}$$

$$H(z) = \sqrt{\Omega_{\rm M,0}(1+z)^3 + \Omega_{k,0}(1+z)^2}$$

Arianna Renzini

 $h_{GW}(m_1, m_2, s_1, s_2, a_L, \theta, \phi, \phi)$ distance *n*_{source} Location H(z)can be correlated with other measurements

Cosmological information in BBHs: dark sirens

- \rightarrow break the degeneracy: <u>independent information on z</u>:
- Galaxy catalog \leftrightarrow matched to BBH catalog
- Features in the BBH population mass spectrum encoding cosmological information dark/spectral sirens

(direct EM counterpart: e.g. GW170817)

bright sirens

LVK, Nature 551 85-88 (2017)

dark sirens

Cosmology in the BBH population : the merger rate

rate of mergers evolves with z!

Arianna Renzini

BBHS & cosmology

Dark siren cosmology: BBHs + galaxy catalogs

- formally: use galaxy catalog as redshift prior
- $p(H_0 \mid d_{\text{GW}}, N_{\text{obs}}, \Lambda) = p(H_0) p(N_{\text{obs}} \mid H_0, \Lambda) \times$ $\frac{N_{\text{obs}}}{\int p(d_{\text{GW}} | \hat{D}_{\text{GW}}, H_0, \Lambda)}$

BBHs (probably) live in <u>galaxies</u> \rightarrow sky locations & redshifts are correlated.

localise BBH in a volume correlate with galaxies in that volume

statistical z measurement

Dark siren cosmology: BBHs + galaxy catalogs

BBHs (probably) live in <u>galaxies</u> \rightarrow sky locations & redshifts are correlated.

- formally: use galaxy catalog as redshift prior in
- $p(H_0 | d_{\text{GW}}, N_{\text{obs}}, \Lambda) = p(H_0) p(N_{\text{obs}} | H_0, \Lambda) \times$ $\int p(d_{\rm GW} | \hat{D}_{\rm GW}, H_0, \Lambda)$

... however, galaxy catalogs are incomplete:

GLADE+ : an extended galaxy catalogue for multimessenger searches with advanced gravitational-wave detectors, G. Dalya et al., MNRAS, Volume 514, Issue 1, July 2022, Pages 1403-1411

Arianna Renzini

localise BBH in a volume

correlate with galaxies in that volume

statistical z measurement

Dark siren cosmology: BBHs + galaxy catalogs

Gray et al. '21 approach: pixelise the sky and keep track of incompleteness

$$p(d_{\text{GW}} | \hat{D}_{\text{GW}}, H_0, \Lambda) = \frac{1}{N_{\text{pix}}} \sum_{\text{pix}} p(d_{\text{GW}} | \Omega_{\text{pix}}, \hat{D}_{\text{GW}}, H_0, \Lambda)$$
$$= \frac{1}{N_{\text{pix}}} \sum_{\text{pix}} p(d_{\text{GW}} | \Omega_{\text{pix}}, \boldsymbol{G}, \hat{D}_{\text{GW}}, H_0, \Lambda)$$

 $+p(d_{\rm GW})$

Arianna Renzini

$|\Omega_{\text{pix}}, G, \hat{D}_{\text{GW}}, H_0, \Lambda) p(G | \Omega_{\text{pix}}, \hat{D}_{\text{GW}}, H_0, \Lambda)$ in the catalogue

$$\Omega_{\text{pix}}, \bar{G}, \hat{D}_{\text{GW}}, H_0, \Lambda) p(\bar{G} \mid \Omega_{\text{pix}}, \hat{D}_{\text{GW}}, H)$$

not in the catalogue

Dark siren cosmology: population models

Infer cosmology together with population hyper-parameters Λ : $p_{\text{BBH}}(\theta \mid \Lambda, H_0, \Omega_M, w_0) \propto p(m_1, m_2 \mid \Lambda_m) p(z \mid \Lambda_z) \frac{p(z \mid H_0, \Omega_M, w_0)}{1 + z}$

 \rightarrow many degeneracies...

... unless! we can leverage sharp features in the population distributions:

Arianna Renzini

Farr, Fishbach, Ye, & Holz, ApJL 883 L42 (2019) Mastrogiovanni+, PRD 104 062009 (2021)

Dark siren cosmology: LVK constraints

BOTH will become more sensitive with 3G!

which will be the most sensitive?

quality of catalogues?

systematics?

BBH/NSBH/BNS rates?

An alternative? Tracing LSS statistically

(fiducial: simulations that match observed population)

Arianna Renzini

PREVIEW: 3G maps with 10^5 BBH events per year

A (stochastic?) gravitational-wave "background"

incoherent superposition of many GWs

and... less model dependent! because we can use a <u>sufficient statistic</u>

Arianna Renzini

unresolved by detectors

-----> stochastic variables

Gravitational-Wave Background Sources

10^{0} **Primordial SMBBHs** Planck Cosmic strings Neff 10^{-2} · FOPTs ΡΡΤΑ **GWs from inflation** Stellar-mass CBCs LISA LVK O3 — Inflation 10^{-4} first order phase PTAs transitions 10^{-6} cosmic strings $\Omega_{gw}(f)$ 10^{-8} primordial black holes CMB 10^{-10} - 10^{-12} r **Beyond GR** 10^{-14} -**TVS polarisations** 10^{-16} - 10^{-20} 10^{-11} 10^{-17} 10^{-14}

Arianna Renzini

The compact binary GWB:

US

noise threshold

"stochastic" background of binary black holes and neutron stars

resolved binary black hole and neutron star events

www.raps.org

Ω_{GW} : the GW history of the Universe

from Phinney '01 :

number of events in unit comoving volume

(redshifted) energy radiated per event per source-frame frequency

(Hall + Vitale, MIT)

Ω_{GW} : the GW history of the Universe

Access Lo:

- GWB power spectrum shape \rightarrow GW sources Mandic et al. '12, LVK O2 ('19), O3 ('21), ...
- Merger rate amplitude and evolution <u>Callister et al. '20, LVK O3 ('21), ...</u>
- Mass spectrum information and evolution Bavera et al. '21, L. A. C. van Son et al. '22, ...
- Spatial distribution of sources (anisotropic)

target for stochastic searches

Population hyper-prior differences

shading: uncertainty on PLPP mass model

shading: uncertainty on local merger rate

samples from LVK '23 PRX 13 1 011048

Inferring the merger rate evolution

Inferring the merger rate evolution

O5 data run will be pivotal for binary merger rate inference, with or without a detection.

Arianna Renzini

8

from LVK '21 for BBHs

Callister et al. '16, Callister et al. '20

BBHS & cosmology

Inferring the merger rate evolution

from LVK '23 population paper

... what about combining spectral sirens with the stochastic background?

Arianna Renzini

from LVK '21 for BBHs

Callister et al. '16, Callister et al. '20

BBHS & cosmology

Ω_{GW} : the GW history of the Universe

- GWB power spectrum shape \rightarrow characterise the power spectrum, separate BH/NS
- Merger rate amplitude and evolution
- Mass spectrum information and evolution \rightarrow binary progenitors: high redshift mass distribution, SN pair instability, ...
- Spatial distribution of sources (anisotropic)

Veronesi et al. '23

 \rightarrow binary progenitors: time-to-merger delay, metallicity dependence, formation channels

 \rightarrow cross-correlation with <u>LSS</u>; tracer of BBH accretors (<u>AGNs</u>) and BNS counterparts (<u>GRBs</u>)

Stochastic sources: anisotropic spectra

Mapping Ω , estimating the angular spectrum

min χ^2 ("frequentist")

 $\Omega_{\rm GW}(\hat{n}) = \mathscr{F}(\hat{n}, \hat{n}')^{-1} z(\hat{n}')$

LVK anisotropic, AIR & Contaldi '18, '19, '20, +

issue: unresolved modes lead to illconditioned Fisher matrix.

regularisation efforts include Agarwal et al. '21, Xiao & AIR in prep., +

Ultimate goals: have a map/angular spectrum, and/or cross-correlate with LSS: Yang et al. '20, Alonso et al. '20

Banagiri et al. '21

issue: too many parameters; usually uses spherical harmonics and reduces to few modes.

Mapping Ω , estimating th

<u>Maximum Likelihood</u>

 $\Omega_{\rm GW}(\hat{n}) = \mathcal{F}(\hat{n}, \hat{n}')^{-1} z(\hat{n}')$

LVK anisotropic, AIR & Contaldi '18, '19, '20, +

issue: unresolved modes lead to illconditioned Fisher matrix.

regularisation efforts include <u>Agarwal et al. '21</u>, Xiao & AIR in prep., +

Ultimate goals: have a map/angular spectrum Yang et al. '23, Alonso et al. '20

Arianna Renzini

LVK results: Pixel & Spherical Harmonic searches

 $\alpha = 0$

2.8 - 3.2 improvement w.r.t. O2

Arianna Renzini

 $\alpha = 2/3$

 $\alpha = 3$

from ArXiv 2103.08520

Spatial shot noise: de-biasing approach

Arianna Renzini

Angular resolution: LVK and beyond

Arianna Renzini

baseline: distance between simultaneous measurements \sim aperture (similar to radio interferometry)

... need to go to space for high resolution

Angular resolution: LISA and beyond

only hope: MORE DETECTORS IN SPACE

Spatial shot noise: de-biasing approach

★cross-correlate over multiple time chunks, i and j, ignoring auto-correlations which are shot-noise dominated:

Arianna Renzini

$$\hat{C}_{\ell}^{\text{opt}} = \frac{1}{2\ell+1} \frac{1}{n(n-1)} \sum_{\substack{m \ i \neq j}} \hat{\Omega}_{\ell m}^{i} \hat{\Omega}_{\ell m}^{j}$$

— already relevant in O4; crucial for O5 searches! —

3G: no more "backgrounds"?

"new" stochastic signals within reach:

- BNS/BHNS background
- pop III / high z BBH background
- cosmological backgrounds ...

The future: LISA

Arianna Renzini

some thoughts...

Iots of (independent?) cosmology can be potentially done with BBHs next generation detectors will open up many new avenues: both cross-correlating information and as stand-alone searches people are working on methods NOW if ET ends up being 2 detectors/we have 2CEs/..., maps will become more interesting

Data analysis: the cross-correlation statistic

GW detectors collect timestream data :

esumation

Arianna Renzini