Neutral Hydrogen Intensity Mapping

as a cosmological tool

ModIC 2024

14 May 2024 - Trieste IFPU

Hydrogen in cosmic history

The **high** redshift universe

Frequency and redshift for the 21cm line

https://www.pitt.edu/~jdnorton/teaching/

The 21cm line

3 fundamental temperatures:

- **Ο** Tγ the CMB temperature
- □ Tk the gas (IGM) temperature
- □ Ts the spin temperature: sets the population of the hyperfine level with respect to the ground state

21cm signal as the Universe evolves

$$\delta T_b \propto x_{HI} (1+\delta) (1-\frac{T_{\gamma}}{T_s}) \text{ mK}$$

Marta SPINELLI - ModIC 2024

Late-time neutral hydrogen distribution

What is the nature of dark matter and dark energy?

how is dark matter distributed on large scales?

- how does its distribution evolve with cosmic time?
- what is the role of dark energy?

How do baryons trace dark matter?

what is the link between galaxies and dark matter halos?

how are HI galaxies distributed in the cosmic web?

how does the total cosmic HI evolve with redshift?

matter clustering contains a wealth of cosmological information

matter clustering contains a wealth of cosmological information

the distribution of **neutral Hydrogen** is a biased tracer of the **matter clustering**

How can we efficiently observe cosmological volumes?

underlying matter distribution

the distribution of **neutral Hydrogen** is a biased tracer of the **matter clustering**

How can we efficiently observe cosmological volumes?

Intensity Mapping: total intensity of the 21cm emission line in a **large pixel** (low spatial resolution)

Intensity Mapping

E.g. Bharadwaj et al. 2001; Battye et al. 2004; Wyithe et al. 2008; Chang et al. 2008

the distribution of **neutral Hydrogen** is a biased tracer of the **matter clustering**

How can we efficiently observe cosmological volumes?

Intensity Mapping: total intensity of the 21cm emission line in a **large pixel** (low spatial resolution)

Intensity Mapping

E.g. Bharadwaj et al. 2001; Battye et al. 2004; Wyithe et al. 2008; Chang et al. 2008

the distribution of **neutral Hydrogen** is a biased tracer of the **matter clustering**

How can we efficiently observe cosmological volumes?

one-to-one correspondence frequency-redshift high spectral resolution (tomography)

Key cosmological probe

Tomography

Line-Intensity Mapping simulation with galaxy distributions

The SKA Observatory

credit: skatelescope.org

The SKA Observatory

credit: skatelescope.org

BAO at different redshift

HI distribution (IM) at higher redshift

Marta SPINELLI - ModIC 2024

10-3-

C

3

2

Ζ

Beside the SKAO

Single Dish vs interferometry

The SKA Observatory

credit: skatelescope.org

The Radio Sky

credit: skatelescope.org

The Radio Sky

credit: skatelescope.org

atomic and molecular transitions from various celestial objects

Synchrotron radiation due to electrons with relativistic velocities gyrate and radiate in the presence of magnetic fields.

Free-Free radiation produced by the deceleration of (typically) an electron when deflected by the presence of hot gas

Hydrogen on cosmological scales

MS et al. 2021,2022

The challenge of foregrounds

Haslam et al. (1982)

The challenge of foregrounds

Haslam et al. (1982)

The challenge of foregrounds

Intensity Mapping Observations

MeerKLASS: cosmological survey with MeerKAT 64 antennas

Mitigating systematics with cross-correlation

The SKA (Cosmology) timeline

time for MeerKLASS

End-to-end Simulations

Getting to know the instrument

Need a realistic beam modeling side-lobes, frequency evolution, more accurate deconvolution

Matshwule et al. 2021, MS et al. 2022 Scanning strategy

non homogeneous noise, need for real space convolution, polarization leakage

Harper et al. 2018 MS, Matshawule et al. (in prep) Radio Frequency Interference (RFI) impact on cleaning, impact on signal interpretation

Harper et al. 2018 Engelbrecht et al. 2024

Theoretical 21cm (linear) Power Spectrum

We model it as¹

$$P_{21}(z,k,\mu) = \bar{T}_{b}^{2}(z) \left[b_{HI}(z) + f(z) \mu^{2} \right]^{2} P_{m}(z,k)$$

where

- $\bar{T}_{\rm b}^2(z)$ is the mean brightness temperature
- $b_{\rm HI}(z)$ is the HI bias
- f(z) is the growth rate
- $\mu = \hat{k} \cdot \hat{z}$
- $P_{\rm m}(z,k)$ is the matter power spectrum

✓ in good agreement with hydrodynamical simulations results (Villaescusa-Navarro et al. 2018)

¹ Kaiser (1987), Bacon et al. (2019)

SKAO forecasts

$$P_{21}(z,k,\mu) = \bar{T}_{b}^{2}(z) \left[b_{HI}(z) + f(z) \mu^{2} \right]^{2} P_{m}(z,k)$$
$$P_{\ell}(z,k) = \frac{(2\ell+1)}{2} \bar{T}_{b}^{2}(z) P_{m}(z,k) \int_{-1}^{1} d\mu \mathscr{L}_{\ell}(\mu) \left[b_{HI}(z) + f(z) \mu^{2} \right]^{2}$$

МеегКАТ

Gaussian beam (λ/D) realistic noise level 2400h, 2000deg2 in L-band (zeff~0.39)

SKA-MID

tomography up to z~3 20000 deg2, 10.000h multipole expansion (P0+P2)

P21 breaks parameter degeneracies

SKAO forecasts

Berti, MS, Viel 2023a

SKAO forecasts

Marta SPINELLI - ModIC 2024

Berti, MS, Viel 2023b

SKAO forecasts: cross-correlation

Parameter	$\hat{P}_0 + \hat{P}_2$	$\hat{P}_{21,g}^{\text{DESI}}$	$\hat{P}_{21,g}^{\text{DESI}}$ + nuis.	$\hat{P}_{21,g}^{\mathrm{Euclid}}$	$\hat{P}_{21,g}^{\text{Euclid}}$ + nuis.
$\Omega_b h^2$	2.59%	6.43%	23.11%	5.78%	16.99%
$\Omega_c h^2$	0.99%	3.81%	16.63%	3.75%	11.87%
n_s	1.19%	2.43%	6.79%	1.82%	4.59%
$\ln(10^{10}A_s)$	0.37%	0.78%	8.08%	0.54%	7.62%
$100\theta_{MC}$	0.17%	0.39%	0.75%	0.30%	0.62%
H_0	0.25%	0.69%	1.96%	0.49%	1.07%
σ_8	0.29%	0.40%	9.41%	0.58%	10.03%

→ Power spectrum multipoles - 0< z <3

SKAOxEuclid and **SKAOxDESI** comparable constraining power

Broader constraints assuming no knowledge on HI bias (nuisances)

Scelfo, MS et al. (2022)

HI x GW

HI allows us to perform very fine tomography

21 cm line IM - SKAO

High z uncertainty without EM counterparts

GW resolved signals from BHBH mergers - Einstein Telescope

i) Can we calibrate the redshift distribution of GW events by looking at GW × IM?

ii) Can we use GW × IM to investigate Dark Energy?

iii) Can we use GW × IM to detect imprints from a population of merging Primordial Black Hole binaries?

Tracer	GW (ET)	IM (SKAO)
z range	[0.5-3.5]	
$N_{\rm bins}$	3	30
Δz	1.0	0.1

Multi CLASS: Bellomo et al. (2020), Bernal et al.(2020) Fisher Forecasts

Scelfo, *MS et al.* (2022)

e.g. Alonso et al 2017 (Photo-z vs spectro-z)

assuming both HI and GW trace the LSS

Marta SPINELLI - ModIC 2024

Scelfo, MS et al. (2022)

HI x GW

Astrophysical scenario: massive, highly star-forming halos \rightarrow bias GW >1"Early" primordial scenario: PBHs binaries form in the early universe \rightarrow PBHs binaries good DMtracers \rightarrow bias GW ~1Fiducial: ASTROPHYSICAL ($\Gamma_{nbh}^{FID} = 0.0$)

Marta SPINELLI - ModIC 2024

HI simulations

Semi-analytical model GAEA: explicit treatment of cold gas partition in atomic (HI) and molecular (H2) (Xie et al. 2017)

fast intensity map generation

21cm line properties from semi-analytical models, Halo Occupation Distribution methods on fast halo catalogues (HIP-POP)

Spinelli et al. 2020, 2022

GAEA **light-cone construction** essential also for cross-correlation studies with **galaxy surveys code: Anna Zoldan**

Conclusions

21cm Cosmology still have to prove its full potential but offers an incredible window into the evolution of the Universe

Intensity Mapping surveys are taking data (and new instrument are planned)

Detection in cross-correlation: e.g. MeerKLASS x galaxy survey (7.7 σ)

Analysing new data: effort in understanding the instrument and developing better analysis pipelines

Keep improving the simulations: both signal, foregrounds and instrumental effects

Prepare for the SKAO era and its contribution to the knowledge of large-scale structures

Publications of the Astronomical Society of Australia (2020), **37**, e007, 31 pages doi:10.1017/pasa.2019.51

Research Paper

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts

Square Kilometre Array Cosmology Science Working Group: David J. Bacon¹, Richard A. Battye², Philip Bull³, Stefano Camera^{2,4,5,6}, Pedro G. Ferreira⁷, Ian Harrison^{2,7}, David Parkinson⁸, Alkistis Pourtsidou³, Mário G. Santos^{9,10,11}, Laura Wolz¹², Filipe Abdalla^{13,14}, Yashar Akrami^{15,16}, David Alonso⁷, Sambatra Andrianomena^{9,10,17}, Mario Ballardini^{9,18}, José Luis Bernal^{19,20}, Daniele Bertacca^{21,22}, Carlos A. P. Bengaly⁹, Anna Bonaldi²³, Camille Bonvin²⁴, Michael L. Brown², Emma Chapman²⁵, Song Chen⁹, Xuelei Chen²⁶, Steven Cunnington¹, Tamara M. Davis²⁷, Clive Dickinson², José Fonseca^{9,22}, Keith Grainge², Stuart Harper², Matt J. Jarvis^{7,9}, Roy Maartens^{1,9}, Natasha Maddox²⁸, Hamsa Padmanabhan²⁹, Jonathan R. Pritchard²⁵, Alvise Raccanelli¹⁹, Marzia Rivi^{13,18}, Sambit Roychowdhury², Martin Sahlén³⁰, Dominik J. Schwarz³¹, Thilo M. Siewert³¹, Matteo Viel³², Francisco Villaescusa-Navarro³³, Yidong Xu²⁶, Daisuke Yamauchi³⁴ and Joe Zuntz³⁵

SKA Cosmology Science Working Group

N-body DM simulation

Time

N-body DM simulation: Millennium Simulation (Springel et al. 2005)

Semi-analytic model

Hi-Probe POPulator (HiP-POP)

$$M_{\rm H\,I}(M_{\rm h}) = M_{\rm h} \left[a_1 \left(\frac{M_{\rm h}}{10^{10}} \right)^{\beta} e^{-\left(\frac{M_{\rm h}}{M_{\rm break}} \right)^{\alpha}} + a_2 \right] e^{-\left(\frac{M_{\rm min}}{M_{\rm h}} \right)^{\gamma}}$$

z = 0

14

 $\log_{10}^{11} \frac{12}{M_h} \frac{12}{(h^{-1}M_{\odot})}^{13}$

Fit the MHI-Mhalo relation at various GAEA snapshots and find a redshift trend

10

10

 $\log_{10} M_{\rm HI} ~(h^{-1} M_\odot)$

 $\log_{10}(N_h)$

- 0.8

0.0

15

Hi-Probe POPulator (HiP-POP)

Properties of the foregrounds

they are **smooth in frequency** (highly correlated)

Questions:

- Can the **properties** of the foregrounds be used to separate them from the 21cm signal?
- Even if we add some **realism** to our simulations? (foregrounds,beam response,noise,RFI,..)

Mock observation "cube"

Principal Component Analysis

3D Plane

For our Intensity Mapping case:

- from data-"cube" $(N_{\nu} \times N_{\hat{n}})$ one construct $C_{ij} = \frac{1}{N_{\hat{n}}} \sum_{p=1}^{N_{\hat{n}}} T(\nu_i, \hat{n}_p) T(\nu_j, \hat{n}_p)$
- compute eigenvectors and assume foregrounds can be described by the most important of them $(N_{\rm fg})$.

S map = 1

Foreground subtraction challenge

(subset) of the SKA Cosmo IM Focus Group

Project setup:

- various foreground models and realistic HI maps
- instrumental modeling MeerKAT-like and SKAO-like
- 9 different foreground removal methods (PCA, FastICA, ...)

Blind challenge to discover weaknesses and strengths of the various methods Isabella Carucci, Steve Cunnington, Ze Fonseca, Stuart Harper, Mel Irfan, Alkistis Pourtsidou, Marta Spinelli, Laura Wolz

given IM "data",

would your favorite method extract the cosmological signal?

Foreground subtraction challenge

- How much can instrument/foregrounds **coupling** impact the signal reconstruction?
- definition of statistics and metrics to evaluate the relative performances

inevitably **complicate** the foreground cleaning

Intensity Mapping with MeerKAT

Santos et al. 2017, Wang et al. 2021

Antennas	All 64 MeerKAT dishes		
Observation mode	Single-dish		
Frequency range	0.856-1.712 GHz		
Frequency resolution	$0.2 \mathrm{MHz}$		
Time resolution	2s		
Exposure time	$1.5hr \ge 7 scans$		
Target field	WiggleZ 11hr field $(10^{\circ} \times 30^{\circ})$		

