IceCube's Galactic Neutrinos: Diffuse Emission or Hidden Sources?

Markus Ahlers Niels Bohr Institute, Copenhagen

in collaboration with A. Ambrosone, K. Mørch Groth & E. Peretti

The New Era of MM Astroparticle Physics Trieste, February 22, 2024

VILLUM FONDEN

KØBENHAVNS UNIVERSITET

Multi-Messenger Astronomy

Acceleration of **cosmic rays** (CRs) especially in the aftermath of cataclysmic events, sometimes visible in **gravitational waves** (GW).

Secondary **neutrinos** and **gamma-rays** from pion decays:

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma$ $\downarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$

Markus Ahlers (NBI)

Optical Cherenkov Telescopes

IceCube Observatory

- Giga-ton optical Cherenkov telescope at the South Pole
- IceCube Array Collaboration of about 300 scientists at more than 50 international institutions
 - 60 digital optical modules (DOMs) attached to strings
 - 86 IceCube strings
 instrumenting 1 km³ of clear
 glacial ice
 - 81 IceTop stations for cosmic ray shower detections

High-Energy Neutrinos

First observation of high-energy astrophysical neutrinos by IceCube in 2013.

"track event" (e.g. ν_{μ} CC interactions)

"cascade event" (e.g. NC interactions)

(colours indicate arrival time of Cherenkov photons from **early** to **late**)

Markus Ahlers (NBI)

Diffuse TeV-PeV Neutrinos

Very-High Energy Cosmic Rays

Status of Neutrino Astronomy

No significant steady or transient emission from known Galactic or extragalactic high-energy sources, but **several interesting candidates.**

Extragalactic Populations

Populations of extragalactic neutrino sources visible as **individual sources** and by **combined isotropic emission.**

The relative contribution can be parametrized (*to first order*) by the average **local source density** ρ_{eff} and **source luminosity** L_{ν} "Observable Universe" with far (faint) and near (bright) sources.

Hubble horizon

Extragalactic Populations

Populations of extragalactic neutrino sources visible as individual sources and by combined isotropic emission. The relative contribution can be parametrized (*to first order*) by the average local source density $\rho_{\rm eff}$ and source luminosity L_{ν}

[Ackermann, MA, Anchordoqui, Bustamante *et al*.'19] [see also Murase & Waxman'16]

Status of Neutrino Astronomy

Orbiting Solar Observatory (OSO-3) (Clark & Kraushaar'67)

Status of Neutrino Astronomy

Fermi-LAT gamma-ray count map

2017

Galactic Cosmic Rays

- Standard paradigm: Galactic CRs accelerated in supernova remnants
- sufficient power: ~ $10^{-3}M_{\odot}$ per 3 SNe per century [Baade & Zwicky'34] [Ginzburg & Sirovatskii'64]
- diffusive shock acceleration:

 $n_{\rm CR} \propto E^{-\Gamma}$

 rigidity-dependent escape from Galaxy:

$$n_{\rm CR} \propto E^{-\Gamma - \delta}$$

• hadronic $\gamma \& \nu$ emission from interaction with ISM

Galactic Neutrino Emission

Galactic diffuse ν emission at 4.5 σ based on template analysis.

[lceCube **Science** 380 (2023)]

Galactic Neutrino Emission

Best-fit normalization of spectra

Templates with different resolution

[IceCube **Science** 380 (2023)]

[templates: Fermi'12; Gaggero, Grasso, Marinelli, Urbano & Valli '15]

Markus Ahlers (NBI)

Analysis Sample

Analysis is based on novel cascade event selection and reconstruction using deep neutral networks (DNNcascade).

Analysis Sample

Analysis is based on novel cascade event selection and reconstruction using deep neutral networks (DNNcascade).

Point-Source Significance Map

Markus Ahlers (NBI)

Point-Source Significance Map

Markus Ahlers (NBI)

Template and Catalog Searches

	Flux sensitivity Φ	P value	Best-fitting flux Φ
Diffuse Galactic plane analysis			
π^0	5.98	1.26 × 10 ⁻⁶ (4.71σ)	21.8 ^{+5.3} -4.9
KRA_{γ}^{5}	0.16 × MF	6.13 × 10 ⁻⁶ (4.37σ)	$0.55^{+0.18}_{-0.15}\times \text{MF}$
KRA_{γ}^{50}	0.11 × MF	3.72 × 10 ⁻⁵ (3.96σ)	$0.37^{+0.13}_{-0.11} imes MF$
Catalog stacking analysis			
SNR		5.90 × 10 ⁻⁴ (3.24σ)*	
PWN		$5.93 \times 10^{-4} (3.24\sigma)^*$	
UNID		3.39 × 10 ⁻⁴ (3.40σ)*	
	Othe	Other analyses	
Fermi bubbles		0.06 (1.52σ)	post-trial p-value
Source list		0.22 (0.77σ)	template search:
Hotspot (north)		0.28 (0.58σ)	4.5σ
Hotspot (south)		0.46 (0.10σ)	

*Significance values that are consistent with the diffuse Galactic plane template search results.

[IceCube Science 380 (2023)]

Galactic Neutrino Populations

azimuthally symmetric distribution following SNRs (Case et al.)

+ modulation with spiral arms

Galactic Neutrino Populations

azimuthally symmetric distribution following SNRs (Case et al.)

Hidden Galactic Sources?

Contribution of neutrino from "freshly" accelerated CRs most likely to dominate at highest observed energy ($\simeq 100$ TeV).

[Ambrosone, Groth, Peretti & MA'23]

Point-Source Sensitivities

[IceCube **Science** 380 (2023)]

Effective Field of View

Markus Ahlers (NBI)

Point-Source Discovery Horizon

[Ambrosone, Groth, Peretti & MA'23]

Markus Ahlers (NBI)

Point Source vs. Quasi-Diffuse Flux

Populations of galactic neutrino sources visible as individual sources and by the combined isotropic emission. The relative contribution can be parametrized (to first order) by the average source surface density Σ_{\odot} and

source luminosity $L_{100\text{TeV}}$

[Ambrosone, Groth, Peretti & MA'23]

Point Source vs. Quasi-Diffuse Flux

sensitivity scaling:
$$\Phi_{\rm DP}(E_{\nu}, \delta, \sigma_{\rm src}) \simeq \sqrt{\frac{\sigma_{\rm PSF}^2 + \sigma_{\rm src}^2}{\sigma_{\rm PSF}^2}} \Phi_{\rm DP}(E_{\nu}, \delta)$$

Galactic Neutrino Emission

,

Multi-Messenger Fits

Contribution of unresolved Galactic sources **improve MM fits**.

[Schwefer, Mertsch & Wiebusch '23; see also Shao, Lin & Yang'23]

Multi-Messenger Fits

[Schwefer, Mertsch & Wiebusch '23]

Markus Ahlers (NBI)

Galactic Neutrino Emission

Y

Multi-Messenger Fits HAASO-KM2A

Summary

- Multi-messenger astronomy offers a fresh look onto the Universe.
- Neutrino astronomy has reached an important milestone by the discovery of an **isotropic flux of high-energy neutrinos** in 2013.
- So far, **no discovery** of point sources, but some **strong candidates**, in particular, **TXS 0506+056** (2017) and **NGC 1068** (2022).
- Recent observation (4.5σ significance) of neutrino emission of the Galactic Plane (2023), consistent with models of Galactic diffuse emission from cosmic ray interactions in the interstellar medium.
- Observationally, we cannot exclude combined emission of PeVatrons.
- The new/next generation of neutrino (KM3NeT, IceCube-Gen2, GRAND, ...) and γ-ray observatories (LHAASO, CTA, SWGO, ...) will help to decipher Galactic PeVatrons.

Backup Slides

Galactic Neutrino Emission

Contribution of Galactic diffuse emission at 10TeV-PeV is subdominant.

Markus Ahlers (NBI)

Non-Azi

Galactic arm structure has only little impact on conclusions drawn from idealized azimuthally symmetric distributions.

[Ambrosone, Groth, Peretti & MA'23]

Ensemble Fluctuations

Rare sources can have significant ensemble fluctuations that may improve visibility in neutrino telescopes.

[Groth & MA in preparation]

VHE Galactic Gamma-Rays

[lceCube **Science** 380 (2023)]

Point Source Sensitivies

Figure S12: Source list sensitivity and upper limits Sensitivity to sources emitting an E^{-2} spectrum (A) and E^{-3} spectrum (B) for each data set. Individual sources in the source catalog are shown with their 90% confidence level (CL) upper limits assuming an E^{-2} (A) and E^{-3} (B) emission spectra. ANTARES results are for E^{-2} (*61*) and E^{-3} (*62*) sensitivities. We also show previous results from IceCube tracks (20) and cascades (12). Also shown in the 4σ discovery potential (DP) for this work. All results are consistent with background.

[IceCube **Science** 380 (2023)]

Point Source Sensitivities

 E^{-2}

 E^{-3}

[Ambrosone, Groth, Peretti & MA'23]

Point Source vs. Diffuse Flux

[Murase & Waxman'16; Ackermann *et al.'19*]

Rare sources - blazars, HL GRBs or jetted TDEs - can not be the dominant sources of TeV-PeV neutrino emission (magenta band).

Markus Ahlers (NBI)

Multi-Messenger Interfaces

The high intensity of the neutrino flux compared to that of γ -rays and cosmic rays offers many interesting multi-messenger interfaces.

Hadronic Gamma-Rays

Neutrino production via cosmic ray interactions with gas (pp) or radiation (p γ) saturate the isotropic diffuse gamma-ray background.

[see also Murase, MA & Lacki'13; Tamborra, Ando & Murase'14; Ando, Tamborra & Zandanel'15] [Bechtol, MA, Ajello, Di Mauro & Vandenbrouke'15; Palladino, Fedynitch, Rasmussen & Taylor'19]

Markus Ahlers (NBI)

Hidden Sources?

Efficient production of 10 TeV neutrinos in pγ scenarios require sources with **strong X-ray backgrounds** (e.g. AGN core models).

High pion production efficiency implies
strong internal γ-ray
absorption in Fermi-LAT energy range:

$$\tau_{\gamma\gamma} \simeq 1000 f_{p\gamma}$$

[Guetta, MA & Murase'16]

Isotropic Diffuse Flux

[ANTARES, PoS (ICRC2019) 891 & PoS (ICRC2021) 1121; Baikal-GVD, arXiv:2210.01650]

- Independent probe of diffuse flux by ANTARES/KM3NeT and Baikal-GVD.
- Complementary field of view allows to decipher anisotropies, e.g. by Galactic diffuse emission.

Outlook: Baikal-GVD

- GVD Phase 1: 8 clusters with 8 strings each were completed in 2021
- status April 2023: 11(+1) clusters
- final goal: 27 clusters ($\sim 1.4 \text{ km}^3$)

Outlook: KM3NeT/ARCA

- **ARCA :** 2 building blocks of 115 detection units (DUs)
- status April 2023: 21 (ARCA) DUs
- **ORCA** : optimized for low-energy (GeV) and oscillation analyses

- Improved angular resolution for water Cherenkov emission.
- 5σ discovery of **diffuse flux** with full ARCA within one year
- Complementary field of view ideal for the study of point sources.

Markus Ahlers (NBI)

Outlook: IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing)
- New sensor designs, optimized for ease of deployment, light sensitivity & effective area
- New calibration devices,

incorporating les decade of IceCuł efforts

- In parallel, IceTo enhancements (s radio antennas) fe
- Aim: deploymen⁻

Markus Ahlers (NBI)

Vision: IceCube-Gen2

- Multi-component facility (low- and high-energy & multi-messenger)
- In-ice optical Cherenkov array with 120 strings and 240m spacing
- Surface array (scintillators & radio antennas) for PeV-EeV CRs & veto
- Askaryan radio array for >10PeV neutrino detection

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

Neutrino Selection I

Markus Ahlers (NBI)

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Excess from NGC 1068

Northern hot spot in the vicinity of Seyfert II galaxy NGC 1068 has now a significance of 4.2σ (trial-corrected for 110 sources).

Inoue et al $\nu_{\mu} + \bar{\nu}_{\mu}$

 10^{-12}

[IceCube, PRL 124 (2020) 5 (2.9σ post-trial); Science 378 (2022) 6619 (4.2σ post-trial)]

 10^{-15}

 10^{-9}

 10^{-10}

 10^{-11}

 10^{-12}

 10^{-13}

 10^{-14}

 s^{-1}

 $E^2 \phi ~[{\rm TeV}~{\rm cm}^{-2}]$

Excess from NGC 1068

