Cosmic Rays from Supernova Remnants: What are we missing?

Giovanni Morlino

INAF/Osservatorio astrofisico di Arcetri Firenze - ITALY

INAF ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

The new era of multi-messenger astro-particle physics — TRIESTE, 19-23 Feb May 2024

* Luminosity:

Requirements

- * Luminosity:
- ***** Spectrum:

~ 10^{40} erg/s $Q_{\rm inj,Gal} \propto E^{-2.3}$

7 -2s-E^{2.7}

7 -2⁵⁻ E^{2.7}

Requirements

- * Luminosity:
- ***** Spectrum:
- * Maximum energy: $E_{\max,p} \gtrsim 10^{15} \,\mathrm{eV}$
- * Anisotropy:

 $\sim 10^{40}$ erg/s $Q_{\rm inj,Gal} \propto E^{-2.3}$

- $\sim 10^{-3} @ 10 \,\mathrm{TeV}$
- ***** Composition:

few anomalies w.r.t. Solar

2

Requirements

- * Luminosity:
- * Spectrum: $Q_{inj,Gal} \propto E^{-2.3}$
- * Maximum energy: $E_{\max,p} \gtrsim 10^{15} \,\mathrm{eV}$
- * Anisotropy:
- *** Composition:**

few anomalies w.r.t. Solar

 $\sim 10^{40} \, \mathrm{erg/s}$

 $\sim 10^{-3} @ 10 \,\mathrm{TeV}$

<u>Leptons</u>

Not completely clear their origin

- * Electrons: SNR?
- * Positrons: secondaries + Pulsars?

SNR-CR connection: an historical overview

- 1934 Baade & Zwicky were the first to mention SNRs as sources of CRs, but arguing
 against them because CRs where thought to be extragalactic.
- 1942 Alfvén theorised the existence of MHD waves
- * 1949 E. Fermi proposed stochastic acceleration for CRs (II order acceleration)
- * 1964 Ginzburg & Sirovatskii made the argument for SNRs as sources of Galactic CR in the 60's in a more quantitative form (10% kinetic energy needed to be converted in CRs).
- '70 Many authors apply Fermi's idea to SNR shocks (I order acceleration) [Axford et al. 1977; Bell 1978; Blandford & Ostriker 1978; Krymskii 1977; Skilling 1975]
- Observational evidences:
 - 1949: First radio observation of SNR (~300 sources known today)
 - 1995: First non-thermal X-ray emission detected from SN1006 by ASCA (Since 2000: Chandra and XMM-Newton)
 - 2001: first detection of shell type SNR in γ-rays by HEGRA

The SNR paradigm for the origin of CRs

Why SNR are so popular?

- Enough power to supply CR energy density (~10% of the explosion energy) *
- Spatial distribution of SNRs compatible with the CR distribution *
- Presence of non-thermal emission in SNRs *
- A solid theory (DSA) applicable to SNR shocks *

The SNR paradigm for the origin of CRs

Why SNR are so popular?

- Enough power to supply CR energy density (~10% of the explosion energy) *
- Spatial distribution of SNRs compatible with the CR distribution *
- Presence of non-thermal emission in SNRs *
- A solid theory (DSA) applicable to SNR shocks *

Unsolved issues:

- No evidence of acceleration beyond ~100 TeV even in very young SNRs +
- Predicted gamma-ray spectrum does not match the observed ones
- Escaping from sources not fully understood
- Anomalous CR chemical composition cannot be easily explained +
- Spectral anomalies (p, He, CNO have different slopes) +

The SNR paradigm for the origin of CRs

Why SNR are so popular?

- Enough power to supply CR energy density (~10% of the explosion energy)
- Spatial distribution of SNRs compatible with the CR distribution *
- Presence of non-thermal emission in SNRs *
- A solid theory (DSA) applicable to SNR shocks *

Unsolved issues:

- No evidence of acceleration beyond ~100 TeV even in very young SNRs +
- Predicted gamma-ray spectrum does not match the observed ones
- Escaping from sources not fully understood
- Anomalous CR chemical composition cannot be easily explained +
- Spectral anomalies (p, He, CNO have different slopes) +

Where does the acceleration occurs?

- Repeated multiple scatterings with magnetic turbulence produce small energy gain at each shock crossing (*I order Fermi acceleration*)
- Balance between energy gain and escape probability results into a featureless power-law spectrum

Diffusive shock acceleration (DSA)

Basic predictions of Diffusive Shock Acceleration (DSA):

1. Spectrum

$$f(p) \propto p^{-4} \rightarrow f(E) \propto E$$

2. Acceleration efficiency

3. Maximum energy (equating acceleration time with the end of the ejecta dominated phase)

(for relativistic energies)

The non-linear fashion of DSA

What makes DSA a non-trivial theory is the non-linearity due to CR feedback onto the shock dynamics

Magnetic turbulence confines particles around the shock

> Accelerated particles amplify magnetic turbulence

Shock transfer momentum to particles

This chain of processes determines simultaneously:

- Acceleration efficiency
- Spectral slope
- Maximum energy
- Particle escape

The key aspect of the whole process is the magnetic field amplification

DSA from PIC simulations

[Caprioli & Spitkovsky, ApJ 2014]

- A nice confirmation of DSA predictions comes from *particle in cell* (PIC) simulations
 - ✓ Large efficiency ~ 10-20%
 - ✓ Spectrum ~ p^{-4} (~ $E^{-1.5}$ at non-relativistic energies)
 - self-generated magnetic turbulence
- However, PICs can only simulate the beginning of the acceleration process (small dynamical range: *E*_{max} << 1 GeV) \Rightarrow No conclusion on E_{max}

Maximum energy in DSA applied to SNRs

Maximum energy can only increase during the ejecta dominated phase of the SNRs because $u_{\rm sh} \sim {\rm const}$.

Shock radius $\begin{cases} R_{\rm sh} \propto t^{4/7} & \text{ejecta-dominated} \\ R_{\rm sh} \propto t^{2/5} & \text{Sedov-Taylor phase} \end{cases}$

But particle diffuse ahead of the shock: $\langle d \rangle \propto \sqrt{Dt}$

During the ST phase the highest energy particles cannot be reached by the shock and escape towards upstream

$$t_{ST} \simeq 50 \left(\frac{M_{ej}}{M_{\odot}}\right)^{5/6} \left(\frac{E_{\rm SN}}{10^{51}\,{\rm erg}}\right)^{-1/2} \left(\frac{n_{\rm ism}}{{\rm cm}^{-3}}\right)^{-1/2}$$

Magnetic field amplification: observations [Hwang+ 2002; Bamba+, 2005; Ballet 2006; Vink 2012]

Thin non-thermal X-ray filaments provide existence for efficient magnetic field amplification

Equating the thickness of X-ray filaments with the synchrotron losses length-scale:

$$\begin{cases} D = r_L c/3 \propto E/B \\ \tau_{\rm syn} = \frac{3m_e c^2}{4\sigma_{\rm Tom} c\gamma\beta^2 U_B} \propto 1/(E) \\ \Delta \simeq \sqrt{D\tau_{\rm syn}} \propto B^{-3/2} \\ \Psi \end{cases}$$
$$B \simeq 100 - 300 \ \mu G \gg B_{\rm ISM}$$

Magnetic field amplification: observations [Hwang+ 2002; Bamba+, 2005; Ballet 2006; Vink 2012]

Thin non-thermal X-ray filaments provide existence for efficient magnetic field amplification

Similar filaments are observed in almost all young SNRs

Tycho

SN 1006

Blue → non-thermal X-rays

from Cassam-Chenai et al. (2007)

Data

Kepler

Where is the magnetic field amplified? [GM, Amato, Blasi, MNRAS 2009]

- **Downstream**: MHD instabilities (shear-like)
- **Upstream:** only through instabilities driven by CRs
- Amplification is needed both *upstream* and *downstream* to reach high energies **SN 1006**

Non-thermal X-ray emission form SN 1006 (Chandra)

Low magnetic field upstream produces a more extended emission **NOT OBSERVED!**

Magnetic field has to be amplified also upstream

Magnetic field amplification: theory

Isolated SNRs: Possible CR-driven instabilities:

 Resonant streaming instability Skilling 1975; Bell & Lucek 2001; Amato & Blasi 2006; Blasi 2014

Non-resonant (Bell) instability
 Bell 2004; Bell et al. 2013, 2014; Amato &
 Blasi 2009

Turbulent amplification
 Drury & Downes 2012; Xu & Lazarian 2017

Magnetic field amplification: theory

Isolated SNRs: Possible CR-driven instabilities:

SNRs in complex environments: (MFA due to other processes)

 Resonant streaming instability Skilling 1975; Bell & Lucek 2001; Amato & Blasi 2006; Blasi 2014

Non-resonant (Bell) instability
 Bell 2004; Bell et al. 2013, 2014; Amato &
 Blasi 2009

Turbulent amplification
 Drury & Downes 2012; Xu & Lazarian 2017

 SNRs exploding in super bubbles (MFA due to wind-wind collisions), tood yet e.g. Vieu & Reville 2023;
 Not fully

Magnetic field amplification: theory Resonant streaming instability

[Skilling 1975; Bell & Lucek 2001; Amato & Blasi 2006; Blasi 2014]

Amplification is due to resonant interaction between CR with Larmor radius $r_{\rm L}$ and waves with wavenumber $k=1/r_L$.

Fast growth rate (~10 yr for typical SNR shocks)

But saturation level at

 $\Gamma_{CR}(k) = \frac{v_A}{B_0^2/8\pi} \frac{1}{kW(k)} \frac{\partial P_{CR}(>p)}{\partial x}$

A factor ~20 below the *knee*

 $\approx 50 \text{ TeV}$ $E_{\rm max}$

Magnetic field amplification: theory Non-resonant (Bell) instability [Bell 2004; Bell et al. 2013, 2014; Amato & Blasi 2009]

- Amplification due to $\vec{j}_{CR} \times \delta \vec{B}$ force of escaping CR current with magnetic field perturbations
- Fast growth rate but excites small wavelength waves $(\Rightarrow$ need of inverse cascade?)
- $E_{\rm max} \propto \sqrt{\rho_{\rm csm}}$ \longrightarrow high level of amplification only in dense environments (Type II SNe exploding into dense progenitor stellar winds)

$$E_{\text{max}} \simeq \frac{e \,\xi_{cr}}{10 \,c} \,\frac{\sqrt{4\pi\rho}}{\Lambda} \,v_{sh}^2 R_{sh} \simeq 30 \,\text{TeV} \left(\frac{2\pi\rho}{\Lambda}\right)$$

Magnetic field amplification: theory **Turbulent amplification** [Drury & Downes 2012; Xu & Lazarian 2017]

- In presence of density inhomogeneities, the different CR force * acting onto plasma can generate vorticity
- This mechanism is effective only in large precursors (hence E_{max} * already large enough and flat spectrum $\sim E^{-2}$)
- The density discontinuities can be generated even through the non-* resonant instability — filamentation

Filamentation instability observed in 2D hybrid simulations [Caprioli & Spitkovsky, 2013]

Only very young SNRs can accelerate up to PeV Schure & Bell (2013)

Using non-resonant instability:

- large densities

- large shock speed
- Efficient amplification requires:

Only very young SNRs can accelerate up to PeV Schure & Bell (2013)

Using non-resonant instability:

- large densities

- Efficient amplification requires:
- large shock speed

PeV energies can be reached:

- Only by core-collapse SN expanding into dense environment (slow and dense progenitor's wind)
- During the very early phase (age ≤ 50 years)

Application of Bell instability to different type of SNRs: comparison with CR spectrum at Earth [Cristofari, Blasi, Amato, APh 2020]

Assumed acceleration efficiency $\xi_{cr} \approx 0.10$

	Type Ia	Type II	Type II*
$E_{\rm SN} \ [10^{51} {\rm erg}]$	1	1	5 ÷ 10
$\dot{M}_{\rm wind} \ [M_{\odot}/yr]$		10 ⁻⁵	10 ⁻⁴
$M_{\rm ej} \ [M_{\odot}]$	1.4	10	1.0
$\nu_{\rm SN} [{\rm yr}^{-1}]$	10 ⁻²	2×10^{-2}	3×10^{-4}

Application of Bell instability to different type of SNRs: comparison with CR spectrum at Earth [Cristofari, Blasi, Amato, APh 2020]

pe Ia	Type II	Type II*		
1	1	5 ÷ 10		
	10 ⁻⁵	10 ⁻⁴		
1.4	10	1.0		
0 ⁻²	2×10^{-2}	3×10^{-4}		
IBYLL2.1 GJset	DAMPE CALET LE CALET HE AMS – 02 PAMELA Type			
	10^{5}	10 ⁷		

Gamma-rays from SNRs: what's wrong with DSA?

Prediction from test particle theory

	Very young (~300 yr)	Young (~2000 yr)	Middl (~104
Emission type	hadronic	unclear (had./lept.)	hadro
spectrum	soft (~E-2.3)	hard (~E ^{-1.5} - E ^{-1.8})	soft (~
E _{max} (protons)	10-100 TeV	10-100 TeV	<~10

Not enough to explain the knee at ~PeV

How to get gamma-ray spectra different from *E*⁻²?

How to get gamma-ray spectra different from *E*⁻²?

- **Spectra harder than** *E*⁻²**:** *
 - Leptonic origin (predicts flux ~ $E^{-1.5}$)
 - Hadronic with shock expanding in clumpy media +

How to get gamma-ray spectra different from *E*⁻²?

- **Spectra harder than** *E*⁻²**:** *
 - Leptonic origin (predicts flux ~ $E^{-1.5}$)
 - Hadronic with shock expanding in clumpy media
- **Spectra steeper than** *E*⁻²**:**
 - Modified velocity of scattering centres
 - Energy losses during acceleration
 - Break of CR isotropy (only for $v_{sh} \gtrsim 10^4$ km/s)

How to get gamma-ray spectra different from *E*⁻²?

- **Spectra harder than** *E*⁻²**:** *
 - Leptonic origin (predicts flux ~ $E^{-1.5}$)
 - Hadronic with shock expanding in clumpy media
- **Spectra steeper than** *E*⁻²**:**
 - Modified velocity of scattering centres
 - Energy losses during acceleration
 - Break of CR isotropy (only for $v_{sh} \gtrsim 10^4$ km/s)
 - Shock structure modified by neutral Hydrogen (only for $v_{\rm sh} \lesssim 3000 \text{ km/s}$)
 - Particle escaping (only for middle-aged SNRs) +

SNRs associated LHAASO sources

Extended Data Fig. 4 | LHAASO sky map at energies above 100 TeV. The circles indicate the positions of known very-high-energy y-ray sources.

		\bigcap				
LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age (kyr)a	L_s (erg/s) ^b	Potential TeV Counterpart ^c
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	4.5×10^{38}	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	2.8×10^{36}	HESS J1825-137, HESS J1826-130,
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HWC J1825-134
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	2.0×10^{36}	2HWC J1837-065, HESS J1837-069,
	PSR J1838-0537	PSR	1.3^{e}	4.9	$6.0 imes 10^{36}$	HESS J1841-055
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$	_	HESS J1843-033, HESS J1844-030,
						2HWC J1844-032
LHAASO J1849-0003	PSR J1849-0001	PSR	7^{g}	43.1	9.8×10^{36}	HESS J1849-000, 2HWC J1849+001
	W43	YMC	5.5^{h}	_	_	
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4 ⁱ	$\sim 10 - 20^{j}$	_	MGRO J1908+06, HESS J1908+063
	PSR 1907+0602	PSR	2.4	19.5	2.8×10^{36}	ARGO J1907+0627, VER J1907+062
	PSR 1907+0631	PSR	3.4	11.3	5.3×10^{35}	2HWC 1908+063
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	1.6×10^{36}	2HWC J1928+177, 2HWC J1930+18
	PSR J1930+1852	PSR	6.2	2.9	1.2×10^{37}	HESS J1930+188, VER J1930+188
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$	_	
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d	_	_	
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7 l}_{-1.4}$	17.2	3.4×10^{36}	MGRO J2019+37, VER J2019+368,
	Sh 2-104	H II/YMC	$3.3 \pm 0.3^m/4.0 \pm 0.5^n$	_	_	VER J2016+371
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^{o}	_	_	TeV J2032+4130, ARGO J2031+415
	PSR 2032+4127	PSR	1.40 ± 0.08^o	201	1.5×10^{35}	MGRO J2031+41, 2HWC J2031+415
	SNR G79.8+1.2 S	NR candidate	—	_	_	VER J2032+414
LHAASO J2108+5157	_	_	—	_	_	_
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^{p}	$\sim 10^p$	_	VER J2227+608, Boomerang Nebula
	PSR J2229+6114	PSR	0.8^{p}	$\sim 10^p$	2.2×10^{37}	
					1	
					4	

Uncertain nature of sources due to poor angular resolution

- Many PSRs (not a surprise: probability of one PSR in LHAASO PSF ~1)
- 2 young massive stellar clusters
- Not many SNRs (all middle-age mainly interacting with molecular clouds)

SNR Name	Age [kyr]	Distance [kpc]	Туре	Cloud interaction	Puls
G28.6-0.1	14	7 – 9.6	shell	Yes	?
G40.5-0.5	20	3.4 - 5.1	shell	Yes	Yes
G54.1+0.3	1.5 – 2.4 PSR: 2.9	4.1 – 7.2 PSR: 6.2	Composite	?	Yes
G66.0-0.0	?	2.3 – 4	shell	?	No
G79.8+1.2 (Candidate)	?	?	_	_	_
G106.3+2.7 (Boomerang)	> 3900 PSR: 10	0.7 — 0.8 PSR: 3	Composite	Yes	Yes

A simple model for particle escape from SNRs

1) Simple expression for the proton maximum energy

$$p_{\max}(t) = p_M \left(\frac{t}{t_{ST}}\right)^{-\delta}$$

2) assumption:

 $p < p_{max}(t) \Rightarrow$ particles are confined inside the SNR $p > p_{max}(t) \Rightarrow$ particles escape and diffuse

3) If $D_{\text{ext}} \ll D_{\text{gal}}$, escaping particles can interact with the SNR interior for long time

High energy emission can be present also in middleaged SNRs

middle aged SNR

Particle escape from SNRs

For middle-aged SNR:

- Escaping particles can produce large halos around SNRs (similar to the one observed from some PWNe)
- Confinement can be enhanced thanks to streaming • instability of run away particles
- If the external diffusion is suppressed: *
 - Observed steep spectra can be due to escape
 - High energy particles are still around the SNR:

$$\tau_{\rm esc} \simeq 10 \left(\frac{d}{50 \,\mathrm{pc}}\right)^2 \left(\frac{D_{\rm csm}}{D_{\rm Gal}/100}\right)^{-1} \,\mathrm{kyr}$$

LHAASO can probe this scenario thanks to the high * energy sensitivity

Stellar clusters and super-bubbles (the elephant in the room)

Why Star clusters are important?

- Massive stars born in Star Clusters *
 - ~80% of CC SNe explode in SCs
 - ◆ ~20% explode as isolated (probably associated to runaway stars)
- Expands into an environment different from the "regular" ISM
 - Lower density $(n \sim 10^{-3} 0.1)$
 - Higher temperature ($T \sim 10^6 10^8 \text{ K}$)
 - Highly turbulent (+ advection)

Main effects on the SNR evolution

1. High temperature \Rightarrow low Mach number

Example: first SN expanding into the shocked wind

Shocked wind temperature: Sound speed:

$$k_B T_b = \frac{3}{16} m_p v_w$$
$$c_{\text{sound}} = \sqrt{\gamma k_B T_b / m_p}$$

$$\Rightarrow M = \frac{v_{sh}}{c_s} = 3.6 \left(\frac{v_{sh}}{5000 \,\mathrm{km/s}}\right) \left(\frac{v_w}{2500 \,\mathrm{km/s}}\right)^{-1}$$

CAVEAT:

Temperature may decrease due to radiative losses/heat conduction

$$\tau_{\rm cool} \simeq 6 \left(\frac{T}{10^6 \, K}\right)^{1.7} \left(\frac{n}{0.01 \, {\rm cm}^{-3}}\right)^{-1} \, {\rm Myr}$$

Main effects on the SNR evolution

- High temperature \Rightarrow low Mach number 1.
- High turbulence \Rightarrow high magnetic field 2.
 - low Alfvénic Mach number

Example: first SN expanding into the shocked wind

If the magnetic field is produced by wind turbulence:

$$\frac{B^2}{4\pi} v_w = \eta_B L_w \Rightarrow B_b \simeq 10, \mu G$$

Than the Alfvénic Mach number is
$$M_A = \frac{v_{\rm sh}}{v_A} = \sqrt{\frac{4}{11\eta_B}} \frac{v_{\rm sh}}{v_w} \gtrsim 4$$

VA

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time

Example: first SN expanding into the shocked wind

If the magnetic field is produced by wind turbulence:

$$\frac{B^2}{4\pi}v_w = \eta_B L_w \Rightarrow B_b \simeq 10, \mu G$$

Than the Alfvénic Mach number is

D2

$$M_A = \frac{v_{\rm sh}}{v_A} = \sqrt{\frac{4}{11\eta_B}} \frac{v_{\rm sh}}{v_w} \gtrsim 4$$

The maximum energy increases:

$$E_{\rm max}^p \simeq 2 \,\mathscr{F} \left(\frac{B_0}{10\mu G}\right) \left(\frac{M_{\rm ej}}{M_{\odot}}\right)^{-\frac{1}{6}} \left(\frac{E_{\rm SN}}{10^{51} {\rm erg}}\right)^{\frac{1}{2}} \left(\frac{n_0}{0.01 {\rm cm}^{-3}}\right)^{-\frac{1}{6}}$$

Diffusion needs to be Bohm-like

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time
 - enhanced syn. losses

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time
 - enhanced syn. losses
- 3. Fractal structure of dense shell
 - Increase of cooling by conduction

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time
 - enhanced syn. losses
- 3. Fractal structure of dense shell
 - Increase of cooling by conduction
 - Possible increase of grammage

Spectrum of different species escaping the bubble: effect of spallation (The case of Cygnus cocoon $L_{wind} \gtrsim 10^{38} \, \text{erg/s}$)

Some conclusions

DSA applied to SNR shocks is the most solid framework to explain the origin of Gal. CRs. <u>BUT</u> some fundamental problems remain unsolved

From SNRs emission, the standard spectrum $n(E) \sim E^{-2}$ is never observed *

losses due to amplification of magnetic field point towards steeper spectra)

◆ Important environmental effects? (Clumpy media, presence of neutral Hydrogen, ...)

Maximum energies above few tens of TeV never observed

• Resonant instability allows only $\delta B/B_0 \leq 1 \rightarrow E_{\text{max}} \leq 100 \text{ TeV}$

• Non-resonant instability applied to common SNRs also gives $E_{\text{max}} \leq 100 \text{ TeV}$

Pre-amplified magnetic field in super-bubbles may solve the problem

Middle-aged SNR can be promising target for PeV search if diffusion is suppressed *

- Do we lack of some fundamental aspect of the theory? (velocity of magnetic turbulence and energy

 - → PeV energies require very rare (~10⁻⁴ yr⁻¹), powerful events (E_{SN} ~ 10⁵² erg; M_{ej} ~1 M_{sol})

